Berry-Esseen-Type Bound for Nonparametric

Average Treatment Effect Estimator in Randomized Trials

Hongxiang (David) Qiu

Department of Epidemiology and Biostatistics, Michigan State University

Motivation

- Nonparametric average treatment effect estimators based on semiparametric efficiency theory have been increasingly popular.
- > Use flexible data-adaptive machine learning methods to estimate nuisances such as the outcome model and the propensity score.
- > Approximately normal in large samples under minimal assumptions on the data-generating process and relatively mild assumptions on nuisance estimators.
- > Asymptotically valid statistical inference follows from, e.g., Wald confidence intervals (CIs).
- > Is my sample size large enough (for reliable inference)?
- Cross-fitting has been increasingly popular.
 - > Technically, by splitting the data, cross-fitting drops the so-called "Donsker"/"entropy" condition, which essentially restricts the flexibility of nuisance estimators.
 - Allows generalizable nuisance estimators that might almost interpolate the training data (e.g., deep neural networks).
 - > Is cross-fitting useless when Donsker condition holds?
- Many existing methodological frameworks to construct nonparametric estimators of causal effects, e.g., estimating equation, one-step correction, double machine learning, TMLE. Potentially multiple methods to construct Cls.
- All these estimators are asymptotically normal with the same asymptotic variance under similar conditions.
- > All yield asymptotically valid inference under similar conditions.
- > Can we theoretically show that one is better than another?

Objective

Overarching goal: What is the convergence rate of

CI coverage to its nominal coverage?

- A distinct question from the convergence rate or asymptotic distribution of estimators.
- Concerns the convergence rate of the sampling distribution to the asymptotic distribution.
- Since statistical inference is a main usage of asymptotic normality, CI coverage is a *natural follow-up question* to asymptotic normality.

In this study, we focus on the following simpler (standard) setting:

- Observe n i.i.d. data points consisting of covariate X, binary treatment A, and outcome Y, drawn from true distribution P_* .
- Estimate mean counterfactual outcome $\psi_* := E[Y(1)]$. Use Wald Cl for statistical inference. Similar for ATE.
- RCT (allowing randomization based on covariate)
 - Standard G-formula identification based on ignorability
 - \triangleright Known propensity score $\pi_*(x) = P_*(A = 1 \mid X = x)$
- Augmented inverse probability weighted (AIPW) estimator, with or without cross-fitting. Need to estimate the outcome model:

$$Q_*(x) \coloneqq E[Y \mid X = x, A = 1]$$

The estimator \hat{Q} can be flexible.

- AIPW estimator is asymptotically efficient if $\hat{Q} \rightarrow Q_*$.
- AIPW estimator is asymptotically normal as long as $\hat{Q} \to Q_{\infty}$ for some function Q_{∞} .

Review of AIPW estimators

Define doubly-robust transformation with known propensity score:

$$\mathcal{T}(Q)(x, a, y) := \frac{I(a = 1)}{\pi_*(x)} (y - Q(x)) + Q(x)$$

Non-cross-fit AIPW estimator

$$\tilde{\psi} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{T}(\hat{Q})(X_i, A_i, Y_i)$$

Associated influence function-based asymptotic variance estimator:

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left\{ \mathcal{T}(\hat{Q})(X_i, A_i, Y_i) - \tilde{\psi} \right\}^2$$

Nominal $(1 - \alpha)$ -level Wald CI: $\tilde{\psi} \pm z_{\alpha/2} \tilde{\sigma}/\sqrt{n}$.

Cross-fit AIPW estimator (double machine learning)

Split data into K folds of equal size. Let $I_k \subseteq \{1,2,...,n\}$ be the index set of fold k, and \widehat{Q}_k be the estimator of Q_* based on data out of fold k.

$$\hat{\psi}_k = \frac{1}{|I_k|} \sum_{i \in I_k} \mathcal{T}(\hat{Q}_k)(X_i, A_i, Y_i), \qquad \hat{\psi} = \frac{1}{K} \sum_{k=1}^K \hat{\psi}_k$$

Associated influence function-based asymptotic variance estimator:

$$\hat{\sigma}_k^2 = \frac{1}{|I_k|} \sum_{i \in I_k} \{ \mathcal{T}(\hat{Q}_k)(X_i, A_i, Y_i) - \hat{\psi}_k \}^2, \qquad \hat{\sigma}^2 = \frac{1}{K} \sum_{k=1}^K \hat{\sigma}_k^2$$

Nominal $(1 - \alpha)$ -level Wald CI: $\hat{\psi} \pm z_{\alpha/2} \hat{\sigma}/\sqrt{n}$.

Berry-Esseen-type bound

Let $Q_{\#}$ be any fixed function close to \widehat{Q} (e.g., $x \mapsto E[\widehat{Q}(x)]$ or limit of \widehat{Q}) or \widehat{Q}_k . Define approximate scaled variance of estimator based on $Q_{\#}$:

$$\sigma_{\#}^2 := E[\{\mathcal{T}(Q_{\#})(x, a, y) - \psi_*\}^2]$$

and the mean of asymptotic variance estimator:

$$\sigma_{@}^{2} \coloneqq \begin{cases} E[\tilde{\sigma}^{2}] & \text{without cross-fitting} \\ E[\hat{\sigma}^{2}] & \text{with cross-fitting} \end{cases}$$

Let ϕ denote the density of standard Gaussian.

Non-cross-fitting

- Donsker condition: Assume satisfied by VC-hull class with constant envelope M. E.g., \hat{Q} obtained by Highly Adaptive Lasso (HAL).
- Assume $\|\hat{Q} Q_{\#}\|_{p_{1,2}} = o_p(n^{-1/4})$.
- Used concentration inequality for suprema of empirical processes [1]. $P(\tilde{\psi} - z_{\alpha/2} \, \tilde{\sigma} / \sqrt{n} \le \psi_* \le \tilde{\psi} + z_{\alpha/2} \, \tilde{\sigma} / \sqrt{n})$

$$= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_{\emptyset} - \sigma_{\#}}{\sigma_{\#}} + O\left(\sqrt{\log n/n} + \left\{E\|\hat{Q} - Q_{\#}\|_{P_{*},2}^{2}\right\}^{1/3}\right)$$

$$+ O\left(P(S_{+}, X_{+})\right) + P\left(\|\hat{Q} - Q_{\#}\|_{P_{*},2}^{2}\right)^{1/3}$$

$$+ O(R(\delta, \nu, n)) + P(\|\widehat{Q} - Q_{\#}\|_{P_{*}, 2} > \delta M)$$

additional terms vs. cross—fitting

where $R(\delta, \nu, n) = \delta^{2/(\nu+2)} + n^{-1/2} \delta^{4/(\nu+2)-2}$, ν is the VC-dimension of the associated VC-class, and $\delta \lesssim n^{-1/4}$. $R(\delta, \nu, n)$ can be replaced by $\delta \sqrt{\log(1/\delta)} + n^{-1/2} \log(1/\delta)$ for VC-type classes.

Cross-fitting

$$P(\hat{\psi} - z_{\alpha/2}\hat{\sigma}/\sqrt{n} \le \psi_* \le \hat{\psi} + z_{\alpha/2}\hat{\sigma}/\sqrt{n})$$

$$= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_{\emptyset} - \sigma_{\#}}{\sigma_{\#}} + O\left(\sqrt{\log n/n} + \left\{E\|\hat{Q}_k - Q_{\#}\|_{P_*,2}^2\right\}^{1/3}\right)$$

Green terms can be replaced by e.g. $|E||\hat{Q} - Q_{\#}|_{P_{*},2}^{2} \log E ||\hat{Q} - Q_{\#}||_{P_{*},2}^{2}$ under subgaussian assumptions on e.g. $\{\hat{Q}_k(X) - Q_\#(X)\}/\|\hat{Q}_k - Q_\#\|_{P_*,2}$

(given
$$\hat{Q}_k$$
) and $\|\hat{Q} - Q_{\#}\|_{P_*,2} / \sqrt{E \|\hat{Q} - Q_{\#}\|_{P_*,2}^2}$.

Heuristics on variance estimators' bias

Non-cross-fitting

$$\sigma_{\widehat{\emptyset}}^{2} - \sigma_{\#}^{2}$$

$$= E \left[\frac{1}{n} \sum_{i=1}^{n} \frac{I(A_{i} = 1)}{\pi_{*}(X_{i})^{2}} \left(Y_{i} - \widehat{Q}(X_{i}) \right)^{2} \right] - E \left[\frac{I(A = 1)}{\pi_{*}(X)^{2}} \left(Y - Q_{\#}(X) \right)^{2} \right]$$

$$+ E \left[\frac{1}{n} \sum_{i=1}^{n} \widehat{Q}(X_{i})^{2} \right] - E[Q_{\#}(X)^{2}] + 2E \left[\frac{1}{n} \sum_{i=1}^{n} \frac{I(A_{i} = 1)}{\pi_{*}(X_{i})} \left(Y_{i} - \widehat{Q}(X_{i}) \right) \widehat{Q}(X_{i}) \right]$$

$$- 2E \left[\frac{I(A = 1)}{\pi_{*}(X)} \left(Y - Q_{\#}(X) \right) Q_{\#}(X) \right] - \underbrace{Var(\widetilde{\psi})}_{\text{order } 1/n}$$

• (I) anticipated to be ≤ 0 : When π_* is a constant and \widehat{Q} is an empirical MSE minimizer over a function class containing $Q_{\#}$,

$$(I) \le E\left[\frac{1}{n} \sum_{i=1}^{n} \frac{I(A_i = 1)}{\pi_*(X_i)^2} \left(Y_i - \frac{Q_\#(X_i)}{Q_\#(X_i)}\right)^2\right] - E\left[\frac{I(A = 1)}{\pi_*(X)^2} \left(Y - Q_\#(X)\right)^2\right] = 0$$

Also anticipated to be of order $E \| \widehat{Q} - Q_{\#} \|_{P_{*-2}}$.

- (II) anticipated to be ≤ 0 if \hat{Q} is shrunk towards 0 or smoothed; otherwise, no clear bias.
- (III) & (IV) anticipated to be ≈ 0 : If π_* is a constant, and \widehat{Q} and $Q_\#$ are projections, then (III) = (IV) = 0.

Conclusion: We might anticipate $\sigma_{00} < \sigma_{00} \Rightarrow$ Decreased coverage!

Cross-fitting

$$\sigma_{@}^{2} - \sigma_{\#}^{2} = E \int \frac{1 - \pi_{*}(x)}{\pi_{*}(x)} \{ \hat{Q}_{k}(x) - Q_{\#}(x) \}^{2} dP_{*}(x) - \underbrace{Var(\hat{\psi})}_{\text{order } 1/n}$$

$$\underbrace{ \text{order } E \| \hat{Q}_{k} - Q_{\#} \|_{P_{*}, 2}^{2}}^{2}$$

Conclusion: $E \| \hat{Q}_k - Q_\# \|_{P_*, 2}^2 \gg 1/n \Longrightarrow \sigma_{0} > \sigma_\# \Longrightarrow$ Increased coverage!

Simulation & discussion

Estimate ATE in RCT with 7 covariates. CV=20-fold cross-fitting.

 \hat{Q} : SL=Super Learner+GLM-type+HAL; misSL=Super Learner+GLM-type.

A. Wald CI coverage with 95% CI. Thick gray line: 95% nominal coverage B. Distribution of scaled standard error. Black dots: Scaled Monte Carlo standard deviation estimate. Thick gray line: efficient asymptotic standard deviation.

- Cross-fitting or simple \hat{Q} has better coverage.
- Non-cross-fitting + complex $\hat{Q} \Rightarrow$ underestimate $\sigma_{\#}^2 \Rightarrow$ undercoverage
- Simple misspecified $\hat{Q} \Longrightarrow$ large variance
- Efficient asymptotic variance is poor approximation for moderate n.
- Our bound might not be tight.
- A spectrum of complexity, not just "Donsker vs. non-Donsker"
- Potential *trade-off* between efficiency and Wald CI coverage in RCT.

References

[1] Chernozhukov V., Chetverikov D., & Kato K. (2014). Gaussian approximation of suprema of empirical processes. AoS, 42(4), 1564–1597.