
Motivation
• Nonparametric average treatment effect estimators based on 

semiparametric efficiency theory have been increasingly popular.

➢ Use flexible data-adaptive machine learning methods to estimate 

nuisances such as the outcome model and the propensity score.

➢ Approximately normal in large samples under minimal 

assumptions on the data-generating process and relatively mild 

assumptions on nuisance estimators.

➢ Asymptotically valid statistical inference follows from, e.g., Wald 

confidence intervals (CIs).

➢ Is my sample size large enough (for reliable inference)?

• Cross-fitting has been increasingly popular.

➢ Technically, by splitting the data, cross-fitting drops the so-called 

“Donsker”/“entropy” condition, which essentially restricts the 

flexibility of nuisance estimators.

➢ Allows generalizable nuisance estimators that might almost 

interpolate the training data (e.g., deep neural networks).

➢ Is cross-fitting useless when Donsker condition holds?

• Many existing methodological frameworks to construct 

nonparametric estimators of causal effects, e.g., estimating equation, 

one-step correction, double machine learning, TMLE. Potentially 

multiple methods to construct CIs.

➢ All these estimators are asymptotically normal with the same 

asymptotic variance under similar conditions.

➢ All yield asymptotically valid inference under similar conditions.

➢ Can we theoretically show that one is better than another?
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Objective

Overarching goal: What is the convergence rate of

CI coverage to its nominal coverage?

• A distinct question from the convergence rate or asymptotic 

distribution of estimators.

• Concerns the convergence rate of the sampling distribution to the 

asymptotic distribution.

• Since statistical inference is a main usage of asymptotic normality, CI 

coverage is a natural follow-up question to asymptotic normality.

In this study, we focus on the following simpler (standard) setting:

• Observe 𝑛 i.i.d. data points consisting of covariate 𝑋, binary 

treatment 𝐴, and outcome 𝑌, drawn from true distribution 𝑃∗.

• Estimate mean counterfactual outcome 𝜓∗ ≔ 𝐸[𝑌 1 ]. Use Wald CI 

for statistical inference. Similar for ATE.

• RCT (allowing randomization based on covariate)

➢ Standard G-formula identification based on ignorability

➢ Known propensity score 𝜋∗ 𝑥 = 𝑃∗(𝐴 = 1 ∣ 𝑋 = 𝑥)

• Augmented inverse probability weighted (AIPW) estimator, with or 

without cross-fitting. Need to estimate the outcome model:

𝑄∗ 𝑥 ≔ 𝐸[𝑌 ∣ 𝑋 = 𝑥, 𝐴 = 1]

The estimator ෠𝑄 can be flexible.

• AIPW estimator is asymptotically efficient if ෠𝑄 → 𝑄∗.

• AIPW estimator is asymptotically normal as long as ෠𝑄 → 𝑄∞ for some 

function 𝑄∞.

Review of AIPW estimators
Define doubly-robust transformation with known propensity score:

𝒯 𝑄 𝑥, 𝑎, 𝑦 : =
𝐼(𝑎 = 1)
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Non-cross-fit AIPW estimator
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Associated influence function-based asymptotic variance estimator:
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Nominal (1 − 𝛼)-level Wald CI: ෨𝜓 ± 𝑧𝛼/2 ෤𝜎/ 𝑛.

Cross-fit AIPW estimator (double machine learning)

Split data into 𝐾 folds of equal size. Let 𝐼𝑘 ⊆ {1,2, … , 𝑛} be the index set 

of fold 𝑘, and ෠𝑄𝑘 be the estimator of 𝑄∗ based on data out of fold 𝑘.
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Associated influence function-based asymptotic variance estimator:
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Nominal (1 − 𝛼)-level Wald CI: ෠𝜓 ± 𝑧𝛼/2 ො𝜎/ 𝑛.

Heuristics on variance estimators’ bias
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Berry-Esseen-type bound
Let 𝑄# be any fixed function close to ෠𝑄 (e.g., 𝑥 ↦ 𝐸[ ෠𝑄(𝑥)] or limit of ෠𝑄) 

or ෠𝑄𝑘. Define approximate scaled variance of estimator based on 𝑄#:

𝜎#
2 ≔ 𝐸 𝒯 𝑄# 𝑥, 𝑎, 𝑦 − 𝜓∗

2

and the mean of asymptotic variance estimator:

𝜎@
2 ≔ ൝

𝐸 ෤𝜎2  without cross−fitting

𝐸[ ො𝜎2] with cross−fitting

Let 𝜙 denote the density of standard Gaussian.

Non-cross-fitting

• Donsker condition: Assume satisfied by VC-hull class with constant 

envelope 𝑀. E.g., ෠𝑄 obtained by Highly Adaptive Lasso (HAL).

• Assume ෠𝑄 − 𝑄# 𝑃∗,2
= 𝑜𝑝(𝑛−1/4).

• Used concentration inequality for suprema of empirical processes [1].

𝑃 ෨𝜓 − 𝑧𝛼/2 ෤𝜎/ 𝑛 ≤ 𝜓∗ ≤ ෨𝜓 + 𝑧𝛼/2 ෤𝜎/ 𝑛

= 1 − 𝛼 + 2𝜙 𝑧𝛼/2 𝑧𝛼/2

𝜎@ − 𝜎#

𝜎#
+ 𝑂 log 𝑛 /𝑛 + 𝐸 ෠𝑄 − 𝑄# 𝑃∗,2

2 1/3

+ 𝑂 𝑅 𝛿, 𝜈, 𝑛 + 𝑃 ෠𝑄 − 𝑄# 𝑃∗,2
> 𝛿𝑀

additional terms vs. cross−fitting

where 𝑅 𝛿, 𝜈, 𝑛 = 𝛿2/ 𝜈+2 + 𝑛−1/2𝛿4/ 𝜈+2 −2, 𝜈 is the VC-dimension of 

the associated VC-class, and 𝛿 ≲ 𝑛−1/4. 𝑅 𝛿, 𝜈, 𝑛  can be replaced by 

𝛿 log(1/𝛿) + 𝑛−1/2 log(1/𝛿) for VC-type classes.

Cross-fitting
𝑃 ෠𝜓 − 𝑧𝛼/2 ො𝜎/ 𝑛 ≤ 𝜓∗ ≤ ෠𝜓 + 𝑧𝛼/2 ො𝜎/ 𝑛

= 1 − 𝛼 + 2𝜙 𝑧𝛼/2 𝑧𝛼/2

𝜎@ − 𝜎#

𝜎#
+ 𝑂 log 𝑛 /𝑛 + 𝐸 ෠𝑄𝑘 − 𝑄# 𝑃∗,2

2 1/3

Green terms can be replaced by e.g. 𝐸 ෠𝑄 − 𝑄# 𝑃∗,2

2
log 𝐸 ෠𝑄 − 𝑄# 𝑃∗,2

−2
 

under subgaussian assumptions on e.g. ෠𝑄𝑘 𝑋 − 𝑄# 𝑋 / ෠𝑄𝑘 − 𝑄# 𝑃∗,2
 

(given ෠𝑄𝑘) and ෠𝑄 − 𝑄# 𝑃∗,2
/ 𝐸 ෠𝑄 − 𝑄# 𝑃∗,2

2
.

Non-cross-fitting
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order 1/𝑛

• (I) anticipated to be ≤ 0: When 𝜋∗ is a constant and ෠𝑄 is an empirical 

MSE minimizer over a function class containing 𝑄#,
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2
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Also anticipated to be of order 𝐸 ෠𝑄 − 𝑄# 𝑃∗,2
.

• (II) anticipated to be ≤ 0 if ෠𝑄 is shrunk towards 0 or smoothed; 

otherwise, no clear bias.

• (III) & (IV) anticipated to be ≈ 0: If 𝜋∗ is a constant, and ෠𝑄 and 𝑄# are 

projections, then III = IV = 0.

Conclusion: We might anticipate 𝜎@ < 𝜎# ⟹ Decreased coverage!

Cross-fitting
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2
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order 𝐸 ෠𝑄𝑘−𝑄# 𝑃∗,2
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order 1/𝑛

Conclusion: 𝐸 ෠𝑄𝑘 − 𝑄# 𝑃∗,2

2
≫ 1/𝑛 ⟹ 𝜎@ > 𝜎# ⟹ Increased coverage!

Simulation & discussion

Estimate ATE in RCT with 7 covariates. CV=20-fold cross-fitting.
෠𝑄: SL=Super Learner+GLM-type+HAL; misSL=Super Learner+GLM-type.

A. Wald CI coverage with 95% CI. Thick gray line: 95% nominal coverage

B. Distribution of scaled standard error. Black dots: Scaled Monte Carlo standard 

deviation estimate. Thick gray line: efficient asymptotic standard deviation.

• Cross-fitting or simple ෠𝑄 has better coverage.

• Non-cross-fitting + complex ෠𝑄 ⇒ underestimate 𝜎#
2 ⇒ undercoverage

• Simple misspecified ෠𝑄 ⟹ large variance

• Efficient asymptotic variance is poor approximation for moderate 𝑛.

• Our bound might not be tight.

• A spectrum of complexity, not just “Donsker vs. non-Donsker”

• Potential trade-off between efficiency and Wald CI coverage in RCT.
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