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Motivation | | Heuristics on variance estimators’ bias
* Nonparametric average treatment effect estimators based on Define doubly-robust transformation with known propensity score: Non-cross-fitting
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semlparam.etrlc efficiency .theory ha-we been.lncreasmgly popul-ar. T(Q)(x,a,y): = > (y . Q(x)) +0(x) @~ % _ _ _
» Use flexible data-adaptive machine learning methods to estimate . LN _F lz I(4; = 1) (Y- B (X-))Z _F I(A=1) (Y B Q#(X))z
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nuisances such as the outcome model and the propensity score. Non-cross-tit AIPW estlmc’itor N . (X;)? _ | . (X)? _
» Approximately normal in large samples under minimal ) = lz T(Q)(X;, A;, Y7) (I
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assumptions on the data-generating process and relatively mild i=1 1 Ao , I I(4;=1) ~ ~
assumptions on nuisance estimators. Associated influence functiog-based asymptotic variance estimator: +E ﬁ; Q(X;) _ ~ ElQy(X)7] +2E ﬁ; . (X;) (Yi B Q(Xi)) Q(Xi)_
> Asymptotically valid statistical inference follows from, e.g., Wald o 1 A 2 N ' - i -
confidence mteryals (Cls). | | | i=1 —2F 0 (Y — Qu(X))Qs(X)| — Var()
» Is my sample size large enough (for reliable inference)? Nominal (1 — a)-level Wald CI: y £ z,/, 6//n. _ LT ' 1 order i/n
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* Cross-fitting has been increasingly popular. _ _ _ _ . (V) _ . . .
_ . o Cross-fit AIPW estimator (double machine learning)  (I) anticipated to be < 0: When r, Is a constant and @ Is an empirical
» Technically, by splitting the data, cross-fitting drops the so-called _ | | _ L . .
» /e ” . . . . Split data into K folds of equal size. Let I, € {1,2, ...,n} be the index set MSE minimizer over a function class containing Qy,
Donsker”/*“entropy” condition, which essentially restricts the . _ - n : _ _
. . . of fold k, and Q, be the estimator of Q. based on data out of fold k. 1 I1(4;=1) 2 [(A=1) 2
flexibility of nuisance estimators. o (D<E _Z )2 (v, —0.X))" | -E 32 (Y — QX)) | =0
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» Allows generalizable nuisance estimators that might almost D) = mz T(Qk)(Xi»Ai: Y), P = Ez D .l .1 )
interpolate the training data (e.g., deep neural networks). kl & = Also anticipated to be of order E||Q — Q4| P2
» Is cross-fitting useless when Donsker condition holds? Associated influence function-based asymptotic variance estimator: » (Il) anticipated to be < 0 if Q is shrunk towards 0 or smoothed:
K : .
+ Many existing methodological frameworks to construct . 1 - ~ 12 o 1. otherwise, no clear bias.

J g . X L . G; = I_z{T(Qk)(Xi;Ai; Y) -}, 6% = Ez 67 . s . -
nonparametric estimators of causal effects, e.g., estimating equation, [ i T et - (I) & (V) anticipated to be = 0: If , is a constant, and @ and Q4 are
one-step correction, double machine learning, TMLE. Potentially Nominal (1 — a)-level Wald CI: ) + z,, 6/7. projections, then (III) = (IV) = 0.
multiple methods to construct Cls. Conclusion: We might anticipate o, < 0, = Decreased coverage!

> All these estimators are asymptotically normal with the same B erry-Esseen -type bound

asymptotic variance under similar conditions.

Cross-fitting

Let Q4 be any fixed function close to 0 (e.g., x = E[Q(x)] or limit of Q)
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» All yield asymptotically valid inference under similar conditions. or 0,.. Define approximate scaled variance of estimator based on Q.: Op — 04 = Ef

» Can we theoretically show that one is better than another? o2 = E[{T(0)(x, a,y) — ¥.}?]
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and the mean of asymptotic variance estimator:

Objective o :E[ﬁz] without cross—fitting Conclusion: E||Q; — Q#Hi*’z » 1/n = o, > s = Increased coverage!
. . @ |E [6°] with cross—fitting ] : : :
Overarching goal: What is the convergence rate of ‘ Simulation & discussion

Let ¢ denote the density of standard Gaussian.

Cl coverage to its nominal coverage? A n: 100 B - 100
« Adistinct question from the convergence rate or asymptotic Non-cross-fitting 3 50 1
distribution of estimators. * Donsker condition: Assume satisfied by VC-hull class with constant O 0.91 % Y ;‘82 ¢<’><.>'
 Concerns the convergence rate of the sampling distribution to the envelope M. E.g., Q obtained by Highly Adaptive Lasso (HAL). % 0-8° ¢ _ fg: Q
asymptotic distribution. . Assume HQ _ Q#Hp*,z — Op(n—1/4)_ g T I;( e
* Since stat?stical inference Is a main usgge of asymptoti.c normali.ty, Cl * Used concentration inequality for suprema of empirical processes [1]. g T Y —% If'}JJ 50 -
coverage Is a natural follow-up question to asymptotic normality. P(1]5 — Zg)p G/ S P, < D + Za)> 5/\/5) y g 0.9 - gg: ¢ — <>
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In this study, we focus on the following simpler (standard) setting: =l-at 2¢(Z“/2)Z“/2 @a# -0 (\/logn/n T {EHQ N Q#Hp*,z} ) r . . + 10~ r . . ¢
 Observe n I.1.d. data points consisting of covariate X, binary + O(R(& v, n)) + P (H@ - Q#”P*,Z > 5M) CYmissh Cvri;thn(;l;SL > cymisst Cvri;thn(;z& >
treatment A4, and outcome Y, drawn from true distribution P.. B additional terms vs. cross—fitting i Igstimate ATE in RCT with 7 covariates. CV=20-fold cross-fitting.
» Estimate mean counterfactual outcome 1, := E[Y(l)]. Use Wald ClI where R(5,v,n) = 52/(v+2) 4 n—1/254/(v+2)—2’ v is the VC-dimension of Q. SL=Super Learner+_GLI\/I-type+HA_L; misSL;Super Learn_er+GLM-type.
o _ o A.Wald CI coverage with 95% CI. Thick gray line: 95% nominal coverage
for statistical inference. Similar for ATE. the associated VC-class, and § < n~%*. R(5,v,n) can be replaced by B. Distribution of scaled standard error. Black dots: Scaled Monte Carlo standard
» RCT (allowing randomization based on covariate) 5\/log(1/5) 4 n—1/2 log(1/8) for VC-type classes. deviation estimate. Thick gray line: efficient asymptotic standard deviation.
» Standard G-formula identification based on ignorability » Cross-fitting or simple Q has better coverage.
> Known propensity score . (x) = BL(A=1|X = x) Cross-fitting » Non-cross-fitting + complex @ = underestimate o7 = undercoverage
« Augmented inverse probability weighted (AIPW) estimator, with or P(llj — Zg/20/n <P, < P + Za/sz\/\/ﬁ) » Simple misspecified ) = large variance
without cross-fitting. Need to estimate the outcome model: —1—a+ 2¢(Za/z)2a/z P — % L O (\/10gn/n 1 {E”Qk — Q#HIZJ 2}1/3)  Efficient asymptotic variance is poor approximation for moderate n.
Q.(x) = E[Y | X = x,A = 1] o ’ . Our bound might not be tight.
The estimator Q can be flexible. A Green terms can be replaced by e.g. \/EH@ _ Q#”i logE[|Q — Q#H;*ZZ - A spectrum of complexity, not just “Donsker vs. non-Donsker”
* AIPW estimator is asymptotically efficient if Q — Q... ) under subgaussian assumptions on e.g {@k(X) - Q,#(X)}/ 5\ — Q#H | * Potential trade-off between efficiency and Wald CI coverage in RCT.
. :J :(:/t\iloensg:étor is asymptotically normal as long as Q0 — Q. for some A A A | P.,2
(given Q) and HQ — Q#HP*’Z/ EHQ o Q#HP*,Z' [1] Chernozhukov V., Chetverikov D., & Kato K. (2014). Gaussian approximation of

suprema of empirical processes. AoS, 42(4), 1564—-1597.
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