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Motivation: causal inference with panel data

A common scenario:
Intervention on a single unit (e.g., country, state, etc.)

Observe time series data of treated unit and a few untreated units

How to estimate the causal effect of this intervention?
Example:

A carbon tax and a value-added tax on transport fuel were issued in
Sweden in 1990

What is the effect of this (composite) intervention on per-capita CO2
emission from transportation in Sweden?
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Motivation: causal inference with panel data

Example data:
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Motivation: causal inference with panel data

Notable challenges compared to “usual causal inference” with iid data:
Lack of randomization in treatment assignment

among units
across time periods

Serial correlation
within units
potentially across units

Somewhat strong assumptions appear necessary in panel data setting.
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Idea behind classical synthetic controls

Some notations:
Total number of time periods: T

Intervention time: T0

Unit index: treated= 0; control= 1, . . . ,N

Outcome of unit i at time t: Yt,i

Counterfactual outcome of treated unit corresponding to treatment
and control: Yt,0(1) and Yt,0(0)

Causal estimand (ATT): ϕ∗(t) := E[Yt,0(1) − Yt,0(0)] at t > T0

To estimate the ATT ϕ∗(t),
Yt,0(1) = Yt,0 is observed

how to learn about Yt,0(0)?
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Idea behind classical synthetic controls

Intuition:
Might impute Yt,0(0) with control units’ contemporary outcomes Yt,i

Consider this linear latent factor model [Abadie and Gardeazabal,
2003, Abadie et al., 2010, 2015]

Yt,0(0) = U⊤
t α0 + ϵt,0

Yt,i = U⊤
t αi + ϵt,i

Ut : latent time-varying factor (confounder)
αi : unit-specific coefficient
ϵt,i : exogenous zero-mean random noise

Under this model, Eϵ[Yt,0(0)] =
∑N

i=1 wiEϵ[Yt,i ] for weights wi such
that α0 =

∑N
i=1 wiαi .
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Abadie’s synthetic controls

Use a weighted average/linear combination of control units to serve
as a synthetic control

Find the weights by fitting treated unit’s pre-treatment trajectory:

ŵ = argmin
w

T0∑
t=1

Yt,0 −
N∑

i=1
wiYt,i︸ ︷︷ ︸

synthetic cnotrol


2

(originally with constraint wi ≥ 0,
∑N

i=1 wi = 1)

Estimate the ATT ϕ∗(t) with Yt,0 −
∑N

i=1 ŵiYt,i (t > T0)
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Proximal synthetic controls

Abadie’s proposal essentially requires no random noise ϵt,i (otherwise,
regression with measurement error in covariates)

Many other ways to form a synthetic control have been proposed, but
most still assume a linear model.

A notable exception: based on proximal causal inference, Shi et al.
[2021] proposed a method allowing for nonlinear models

What is proximal causal inference in the iid setting?

Some degree of unmeasured confounding allowed

Provided two proxies of unmeasured confounder are observed

One proxy can be related to treatment; the other can be related to
outcome

How are these related to synthetic controls?
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Proximal synthetic controls

We split control units into two groups: donors (denoted by W ) and
non-donor control units (denoted by Z )1

W defines set of proxies to model Y (0)

Z defines set of proxies to identify representation of Y (0) based on W

W and Z are IVs for U; Z is an IV for W

Key assumption 1: Zt ⊥⊥ (Yt ,Wt) | Ut

Zt Wt Yt

Ut

Zt Wt Yt

Ut

1From now on, I use Y to denote treated unit’s outcome
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Proximal synthetic controls

Key assumption 2: there exists an outcome confounding bridge
function h∗ such that E[Yt(0) | Ut ] = E[h∗(Wt) | Ut ].
Shi et al. [2021] showed that

1. ϕ∗(t) := E[Yt(1) − Yt(0)] = E[Yt − h∗(Wt)] for t > T0;
2. h∗ satisfies E[Yt − h∗(Wt) | Zt ] = 0 for t ≤ T0.2

Estimation based on generalized method of moments (GMM) with a
parametric model of h∗.

Key contribution: h∗ can be flexibly modeled and need not be linear.

However, h∗ must be correctly specified.

2h∗ is the unique solution under a completeness condition
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Intuition: connect to “usual ATT”

Consider this (over) simplification to the setting of iid “individuals”:
Regard each time t (not unit i!!!) as an index for “individuals”

At time t, regard control units’ outcomes as covariates/proxies for
“individual” t

At := 1(t > T0) is treatment indicator for “individual” t

Suppose that individuals are iid (so ϕ∗(t) = ϕ∗ is constant)

Under these simplifications, ϕ∗(t) is the “usual ATT” in iid settings.
It can be identified via weighting or the influence function.
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Intuition: connect to “usual ATT”

Cui et al. [2020] showed that the influence function of the “usual ATT” is

AtYt
Pr(At = 1) − (1 − At)q∗(Zt)

Yt − h∗(Wt)
Pr(At = 1) − At

h∗(Wt) − ϕ∗

Pr(At = 1) .

h∗ defined as in Shi et al. [2021]

q∗ is a treatment confounding bridge function that captures the
weight for treatment assignment:

E[q∗(Zt) | Ut ,At = 0] = Pr(At = 1 | Ut)
Pr(At = 0 | Ut)

.

This influence function is doubly robust.

Hongxiang Qiu et al (Statistics, UPenn) DR Proximal SC 15 / 31



Gaps between iid setting and panel data setting

Data are not iid.

At is not random, so Pr(At = 1) and their definition of q∗ are not
meaningful.

I will use t− (t+) to denote a general pre-(post-)treatment time
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Our solution

We need some assumptions similar to iid
(Yt(0),Wt) | Ut is identically distributed for all t.

Ut+ is identically distributed for all t+.3

We need to define q∗ while avoiding introducing At as a random variable:
Assume that there exists q∗ such that

E[q∗(Zt−) | Ut− = u] =
dPUt+

dPUt−

(u).

By Bayes Theorem, confounding=covariate shift.

3Can be relaxed
Hongxiang Qiu et al (Statistics, UPenn) DR Proximal SC 17 / 31
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Novel identification results

Theorem (Weighting identification)

ϕ∗(t+) = E[Yt+ − q∗(Zt−)Yt− ]

and q∗ satisfies

E[q∗(Zt−) | Wt− = w ] =
dPWt+

dPWt−

(w).

An implicit implication: distribution of Wt+ should be dominated by Wt− .
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Novel identification results

Theorem (Doubly robust identification)

ϕ∗(t+) = E[Yt+ − q(Zt−)(Yt− − h(Wt−)) − h(Wt+)]

if h = h∗ or q = q∗.

Therefore, if we specify parametric models for h∗ and q∗, only one needs
to be correct.
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Doubly robust estimation with GMM

Parametric models hα for h∗, qβ for q∗, and ϕλ(t) for ϕ∗(t)

α, β, λ are model parameters to be estimated

Arbitrary user-specified functions gh and gq

Dimensions of gh(z) and gq(w) are higher than α and β, resp.
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Doubly robust estimation with GMM

Define moment function

Gt : θ 7→


1(t ≤ T0) {[Yt − hα(Wt)]gh(Zt)}

1(t > T0) {ψ − gq(Wt)}
1(t ≤ T0) {qβ(Zt)gq(Wt) − ψ}

1(t > T0) {ϕλ(t) − [Yt − hα(Wt)] + ψ−}
1(t ≤ T0) {ψ− − qβ(Zt)(Yt − hα(Wt))}

 .

Equation for estimating h∗

Equations for estimating q∗

Equations for estimating ϕ∗(t)
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Doubly robust estimation with GMM

Why define Gt this way?
A key condition of GMM is that E[Gt(θ∗)] = 0 for truth θ∗ and all t

E[[Yt− − h∗(Wt−)]gh(Zt−)] = 0
E[gq(Wt+)] = ψ∗ = E[q∗(Zt−)gq(Wt−)]
−ϕ∗(t+) + E[Yt+ − h∗(Wt+)] = ψ∗

− = E[q∗(Zt−)(Yt− − h∗(Wt−))]

We split one equation involving expectation in pre- and
post-treatment time periods into separate equations so that
E[Gt(θ∗)] = 0 for all t

The condition of centered moment is especially important to obtain a
correct standard error
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Doubly robust estimation with GMM

GMM estimator:

argmin
θ

{
1
T

T∑
t=1

Gt(θ)
}⊤

ΩT

{
1
T

T∑
t=1

Gt(θ)
}

ΩT : user-specified symmetric positive definite matrix (e.g., identity)

Theorem
Under conditions, the GMM estimator is root-n consistent for the ATT
and asymptotically normal as T → ∞, if h∗ or q∗ is correctly specified.
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Simulation

Methods compared:
OLS + Proximal synthetic control methods based on h∗ only, q∗ only,
and both h∗ and q∗

Consider cases where
both h∗ and q∗ are correctly specified
h∗ or q∗ is misspecified
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Simulation: sampling distribution
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Simulation: CI coverage
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Sweden data analysis

Yearly data of 15 countries from 1960–2005 (46 years)
Remove time trend: fit a quadratic curve of time to control countries’
outcomes and take residuals for all countries
Time trend removal is important to make covariate shift assumption
plausible
Choice of donors W : we run Abadie’s original synthetic control
method and choose countries with large weights: Belgium, Denmark,
Greece and New Zealand
Linear model for h∗

Log-linear model for q∗: to restrict model complexity, only a subset of
other control countries are included in the model for q∗ (chosen based
on geographical distance from Sweden):

1. Iceland
2. Iceland, France
3. Iceland, France, Switzerland
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Sweden data analysis

Method Sweden tax placebo at 1980
Abadie’s SC -0.286 0.008
OLS -0.209 (-0.312, -0.107) -0.009 (-0.046, 0.029)
DR -0.321 (-0.451, -0.192) -0.013 (-0.116, 0.090)
DR2 -0.302 (-0.418, -0.186) -0.015 (-0.101, 0.072)
DR3 -0.314 (-0.476, -0.153) -0.011 (-0.242, 0.219)
Outcome bridge -0.346 (-0.479, -0.214) 0.001 (-0.086, 0.087)
Treatment bridge -0.120 (-0.189, -0.052) -0.002 (-0.004, -0.000)
Treatment bridge2 -0.143 (-0.275, -0.011) 0.011 (0.008, 0.013)
Treatment bridge3 -0.145 (-0.246, -0.044) 0.017 (-0.250, 0.283)
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Discussion

Using ideas from proximal causal inference, we have developed doubly
robust methods to estimate ATT in synthetic control settings.

Relaxing stationarity:
We can drop stationarity assumption on Ut+ and consider an ATT
averaged over post-treatment time periods:

∑T
t+=T0+1 ϕ

∗(t+)ℓ(t+)
for given importance time weight ℓ(t+)

Similar GMM estimator, but conservative standard error (because
E[Gt(θ∗)] ̸= 0 for every t but 1

T
∑T

t=1 E[Gt(θ∗)] = 0)
Covariates:

Our methods can incorporate covariates into h∗ and q∗ models,
similarly to proximal causal inference in iid setting

Alternatively, they can be included in proxies W or Z .
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