Doubly Robust Proximal Synthetic Controls

Hongxiang (David) Qiu

Department of Statistics, the Wharton School, University of Pennsylvania

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Background: review of synthetic controls and proximal causal inference

2 Weighting and doubly robust identification

∃▶ ∢ ∃▶

Motivation of synthetic controls: causal inference with panel data

A common scenario:

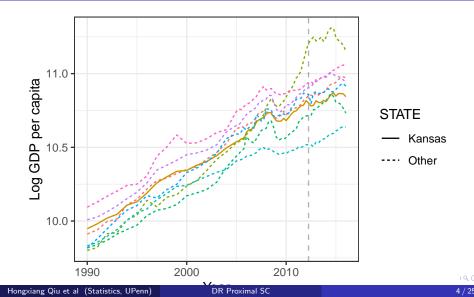
- Intervention on a single unit (e.g., country, state, hospital, etc.)
- Observe time series data of the treated unit and some untreated units

• How to estimate the causal effect of this intervention?

Example:

- An aggressive tax cut in the state of Kansas U.S. in Q1 2012
- What is the effect of this intervention on GDP in Kansas?

Motivation of synthetic controls: causal inference with panel data



Motivation of synthetic controls: causal inference with panel data

Notable challenges compared to iid setting:

- Lack of randomization in treatment assignment
 - among units
 - across time periods
- Serial correlation
 - within units
 - potentially across units

Some notations:

- Total number of time periods: T
- Intervention time: T_0
- Unit index: treated = 0; control = 1, ..., N
- Outcome of unit *i* at time *t*: $Y_{t,i}$
- Counterfactual outcome of treated unit corresponding to treatment and control: $Y_{t,0}(1)$ and $Y_{t,0}(0)$
- Causal estimand (ATT): $\phi^*(t) := \mathbb{E}[Y_{t,0}(1) Y_{t,0}(0)]$ at $t > T_0$
- Main challenge: learn about $Y_{t,0}(0)$ for $t > T_0$

Intuition:

- Impute $Y_{t,0}(0)$ with control units' contemporary outcomes $Y_{t,i}$
- Consider this linear latent factor model [Abadie and Gardeazabal, 2003, Abadie et al., 2010, 2015]

$$Y_{t,0}(0) = U_t^{\top} \alpha_0 + \epsilon_{t,0}$$
$$Y_{t,i} = U_t^{\top} \alpha_i + \epsilon_{t,i}$$

- U_t : latent time-varying factor (confounder)
- α_i : unit-specific coefficient
- $\epsilon_{t,i}$: exogenous zero-mean random noise
- Under this model, $\mathbb{E}_{\epsilon}[Y_{t,0}(0)] = \sum_{i=1}^{N} w_i \mathbb{E}_{\epsilon}[Y_{t,i}]$ for weights w_i such that $\alpha_0 = \sum_{i=1}^{N} w_i \alpha_i$.

• Find the weights by fitting treated unit's pre-treatment trajectory:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{t=1}^{T_0} \left(Y_{t,0} - \underbrace{\sum_{i=1}^{N} w_i Y_{t,i}}_{\text{synthetic cnotrol}} \right)^2$$

(originally with constraint $w_i \ge 0, \sum_{i=1}^N w_i = 1$)

• Estimate the ATT $\phi^*(t)$ with $Y_{t,0} - \sum_{i=1}^N \hat{w}_i Y_{t,i}$ $(t > T_0)$

- Many other ways to form a synthetic control have been proposed, but most still assume a linear model.
- A notable exception: based on proximal causal inference, Shi et al. [2021] proposed a method allowing for nonlinear models

What is proximal causal inference in the iid setting?

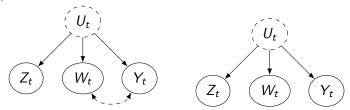
- Many other ways to form a synthetic control have been proposed, but most still assume a linear model.
- A notable exception: based on proximal causal inference, Shi et al. [2021] proposed a method allowing for nonlinear models

What is proximal causal inference in the iid setting?

- Some degree of unmeasured confounding allowed
- Provided two proxies of unmeasured confounder are observed
- One proxy can be related to treatment; the other can be related to outcome
- How are these related to synthetic controls?

Proximal synthetic controls

- Split control units into two groups: donors (outcomes denoted by W) and non-donor control units (outcomes denoted by Z)¹
- W defines set of proxies to model Y(0)
- Z defines set of proxies to identify representation of Y(0) based on W
- Key assumption 1: Z_t ⊥ (Y_t, W_t) | U_t (implied by linear latent factor model)



- Key assumption 2: there exists an outcome confounding bridge function h* such that E[Y_t(0) | U_t] = E[h*(W_t) | U_t].
- h^* is linear if we assume a linear latent factor model
- Shi et al. [2021] showed that

..
$$\phi^*(t) := \mathbb{E}[Y_t(1) - Y_t(0)] = \mathbb{E}[Y_t - h^*(W_t)] \text{ for } t > T_0;$$

- 2. h^* satisfies $\mathbb{E}[Y_t h^*(W_t) \mid Z_t] = 0$ for $t \leq T_0$.²
- Estimation based on generalized method of moments (GMM).
- Key contribution: h^* can be flexibly modeled and need not be linear.
- However, h^* must be correctly specified.

2 Weighting and doubly robust identification

Consider this (over) simplification to the setting of iid "individuals":

- Regard each time t (not unit i!!!) as the index for "individuals"
- At time *t*, regard control units' outcomes as covariates/proxies for "individual" *t*
- $A_t := \mathbb{1}(t > T_0)$ is treatment indicator for "individual" t
- Suppose that individuals are iid (so $\phi^*(t) = \phi^*$ is constant)

Consider this (over) simplification to the setting of iid "individuals":

- Regard each time t (not unit i!!!) as the index for "individuals"
- At time *t*, regard control units' outcomes as covariates/proxies for "individual" *t*
- $A_t := \mathbb{1}(t > T_0)$ is treatment indicator for "individual" t
- Suppose that individuals are iid (so $\phi^*(t) = \phi^*$ is constant)

Under these simplifications, $\phi^*(t)$ is the "usual ATT" in iid settings.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cui et al. [2020] showed that the influence function of the "usual ATT" is

$$\frac{A_t Y_t}{\Pr(A_t=1)} - (1-A_t)\boldsymbol{q}^*(\boldsymbol{Z}_t) \frac{Y_t - h^*(\boldsymbol{W}_t)}{\Pr(A_t=1)} - A_t \frac{h^*(\boldsymbol{W}_t) - \phi^*}{\Pr(A_t=1)}.$$

- h* defined as in Shi et al. [2021]
- *q*^{*} is a *treatment confounding bridge function* that captures the weight for treatment assignment:

$$\mathbb{E}[q^*(Z_t) \mid U_t, A_t = 0] = \frac{\Pr(A_t = 1 \mid U_t)}{\Pr(A_t = 0 \mid U_t)}.$$

- Data are not iid.
- $A_t = \mathbb{1}(t > T_0)$ is not random, so $\Pr(A_t = 1)$ and their definition of q^* are not meaningful.

I will use $t_{-}(t_{+})$ to denote a general pre-(post-)treatment time

We need some assumptions similar to iid

- $(Y_t(0), W_t) | U_t$ is identically distributed for all t (implied by linear latent factor model).
- U_{t_+} is identically distributed for all t_+ .³

We need some assumptions similar to iid

- $(Y_t(0), W_t) | U_t$ is identically distributed for all t (implied by linear latent factor model).
- U_{t_+} is identically distributed for all t_+ .³

We need to define q^* while avoiding introducing A_t as a random variable:

• Assume that there exists q^* that captures a likelihood ratio:

$$\mathbb{E}[q^*(Z_{t_-}) \mid U_{t_-} = u] = \frac{\mathrm{d}P_{U_{t_+}}}{\mathrm{d}P_{U_{t_-}}}(u).$$

³Can be relaxed

Hongxiang Qiu et al (Statistics, UPenn)

Theorem (Weighting identification)

$$\phi^*(t_+) = \mathbb{E}[Y_{t_+} - q^*(Z_{t_-})Y_{t_-}]$$

and q^{*} satisfies

$$\mathbb{E}[q^*(Z_{t_-}) \mid W_{t_-} = w] = \frac{\mathrm{d}P_{W_{t_+}}}{\mathrm{d}P_{W_{t_-}}}(w).$$

An implicit implication: distribution of W_{t_+} should be dominated by W_{t_-} .

æ

Theorem (Doubly robust identification)

$$\phi^*(t_+) = \mathbb{E}[Y_{t_+} - q(Z_{t_-})(Y_{t_-} - h(W_{t_-})) - h(W_{t_+})]$$

if $h = h^*$ *or* $q = q^*$.

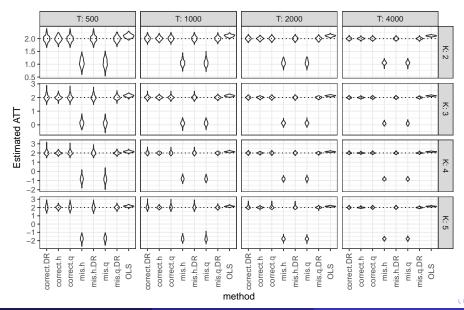
Only need to correctly specify one of h^* and q^* .

Doubly robust estimation and inference based on generalized method of moments (GMM).

Methods compared:

- OLS + Proximal synthetic control methods based on h* only, q* only, and both h* and q*
- Consider cases where
 - both h^* and q^* are correctly specified
 - *h*^{*} or *q*^{*} is misspecified

Simulation: sampling distribution



Hongxiang Qiu et al (Statistics, UPenn)

Kansas data analysis

- Quarterly data of 50 U.S. sates from 1990–2016 (105 quarters)
- Remove time trend: fit a quadratic curve of time to control states' outcomes and take residuals for all states
- Time trend removal is important to make covariate shift assumption plausible
- Choice of donors W: we run Abadie's original synthetic control method and choose states with large weights: North Dakota, South Carolina, Texas, Washington
- Linear model for h*
- Log-linear model for q*: to restrict model complexity, only a subset of non-donor control states are included in the model for q* (chosen based on similarity to Kansas):
 - 1. Iowa
 - 2. Iowa, South Dakota
 - 3. Iowa, South Dakota, Oklahoma

Image: A image: A

Point estimate (95% confidence interval)

Method	tax cut (Q1 2012)	placebo (Q1 2008)
Abadie's SC	-0.048	0.029
OLS	-0.069 (-0.087, -0.050)	$0.026~(2.6 imes 10^{-6},~0.052)$
DR	-0.077 (-0.126, -0.028)	0.004 (-0.068, 0.077)
DR2	-0.095 (-0.147, -0.043)	-0.005 (-0.039, 0.030)
DR3	-0.103 (-0.228, -0.021)	-0.007 (-0.059, 0.046)
Outcome bridge	-0.104 (-0.150, -0.058)	0.012 (-0.069, 0.093)
Treatment bridge	-0.031 (-0.087, 0.024)	-0.028 (-0.063, 0.008)
Treatment bridge2	-0.017 (-0.032, -0.002)	-0.042 (-0.056, -0.0027)
Treatment bridge3	-0.016 (-0.029, -0.003)	-0.048 (-0.097, 0.001)

22 / 25

Using ideas from proximal causal inference, we have developed *doubly robust* methods to estimate ATT in synthetic control settings.

4 3 4 3 4 3 4

Collaborators

Xu Shi

Edgar Dobriban

Wang Miao

Eric Tchetgen Tchetgen

arXiv preprint: https://arxiv.org/abs/2210.02014

Hongxiang Qiu et al (Statistics, UPenn)

DR Proximal SC

< ∃⇒

References

- A. Abadie and J. Gardeazabal. The economic costs of conflict: A case study of the Basque country. *American Economic Review*, 93(1):113–132, 2003. ISSN 00028282. doi: 10.1257/000282803321455188.
- A. Abadie, A. Diamond, and A. Hainmueller. Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program. *Journal* of the American Statistical Association, 105(490):493–505, 2010. ISSN 01621459. doi: 10.1198/jasa.2009.ap08746.
- A. Abadie, A. Diamond, and J. Hainmueller. Comparative Politics and the Synthetic Control Method. *American Journal of Political Science*, 59(2):495–510, 2015. ISSN 15405907. doi: 10.1111/ajps.12116.
- Y. Cui, X. Shi, and W. Miao. Semiparametric proximal causal inference. arXiv preprint arXiv:2011.08411v1, 2020.
- B. Ferman and C. Pinto. Synthetic controls with imperfect pretreatment fit. *Quantitative Economics*, 12(4):1197–1221, 2021. ISSN 1759-7323. doi: 10.3982/qe1596.
- X. Shi, W. Miao, M. Hu, and E. Tchetgen Tchetgen. Theory for identification and Inference with Synthetic Controls: A Proximal Causal Inference Framework. *arXiv* preprint arXiv:2108.13935v3, 2021.

Hongxiang Qiu et al (Statistics, UPenn)

DR Proximal SC

Relaxing stationarity:

- We can drop stationarity assumption on U_{t_+} and consider an ATT averaged over post-treatment time periods: $\sum_{t_+=T_0+1}^{T} \phi^*(t_+)\ell(t_+)$ for given importance time weight $\ell(t_+)$
- Similar GMM estimator, but conservative standard error (because of non-centered moment equation at every *t*)

Covariates:

- Our methods can incorporate covariates into *h*^{*} and *q*^{*} models, similarly to proximal causal inference in iid setting
- Alternatively, they can be included in proxies W or Z.