# Doubly Robust Proximal Synthetic Controls

### Hongxiang (David) Qiu

#### Department of Statistics, the Wharton School, University of Pennsylvania

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



Background: review of synthetic controls and proximal causal inference

#### 2 Weighting and doubly robust identification

∃▶ ∢ ∃▶

# Motivation of synthetic controls: causal inference with panel data

A common scenario:

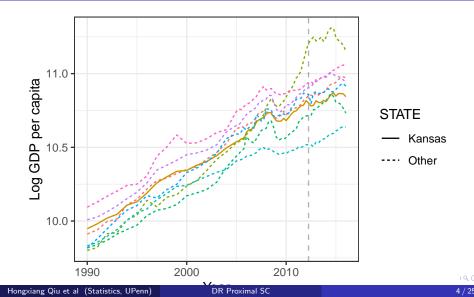
- Intervention on a single unit (e.g., country, state, hospital, etc.)
- Observe time series data of the treated unit and some untreated units

• How to estimate the causal effect of this intervention?

Example:

- An aggressive tax cut in the state of Kansas U.S. in Q1 2012
- What is the effect of this intervention on GDP in Kansas?

# Motivation of synthetic controls: causal inference with panel data



# Motivation of synthetic controls: causal inference with panel data

Notable challenges compared to iid setting:

- Lack of randomization in treatment assignment
  - among units
  - across time periods
- Serial correlation
  - within units
  - potentially across units

Some notations:

- Total number of time periods: T
- Intervention time:  $T_0$
- Unit index: treated = 0; control = 1, ..., N
- Outcome of unit *i* at time *t*:  $Y_{t,i}$
- Counterfactual outcome of treated unit corresponding to treatment and control:  $Y_{t,0}(1)$  and  $Y_{t,0}(0)$
- Causal estimand (ATT):  $\phi^*(t) := \mathbb{E}[Y_{t,0}(1) Y_{t,0}(0)]$  at  $t > T_0$
- Main challenge: learn about  $Y_{t,0}(0)$  for  $t > T_0$

Intuition:

- Impute  $Y_{t,0}(0)$  with control units' contemporary outcomes  $Y_{t,i}$
- Consider this linear latent factor model [Abadie and Gardeazabal, 2003, Abadie et al., 2010, 2015]

$$Y_{t,0}(0) = U_t^{\top} \alpha_0 + \epsilon_{t,0}$$
$$Y_{t,i} = U_t^{\top} \alpha_i + \epsilon_{t,i}$$

- $U_t$ : latent time-varying factor (confounder)
- $\alpha_i$ : unit-specific coefficient
- $\epsilon_{t,i}$ : exogenous zero-mean random noise
- Under this model,  $\mathbb{E}_{\epsilon}[Y_{t,0}(0)] = \sum_{i=1}^{N} w_i \mathbb{E}_{\epsilon}[Y_{t,i}]$  for weights  $w_i$  such that  $\alpha_0 = \sum_{i=1}^{N} w_i \alpha_i$ .

• Find the weights by fitting treated unit's pre-treatment trajectory:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{t=1}^{T_0} \left( Y_{t,0} - \underbrace{\sum_{i=1}^{N} w_i Y_{t,i}}_{\text{synthetic cnotrol}} \right)^2$$

(originally with constraint  $w_i \ge 0, \sum_{i=1}^N w_i = 1$ )

• Estimate the ATT  $\phi^*(t)$  with  $Y_{t,0} - \sum_{i=1}^N \hat{w}_i Y_{t,i}$   $(t > T_0)$ 

- Many other ways to form a synthetic control have been proposed, but most still assume a linear model.
- A notable exception: based on proximal causal inference, Shi et al. [2021] proposed a method allowing for nonlinear models

What is proximal causal inference in the iid setting?

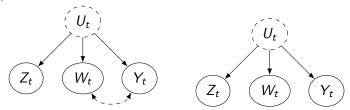
- Many other ways to form a synthetic control have been proposed, but most still assume a linear model.
- A notable exception: based on proximal causal inference, Shi et al. [2021] proposed a method allowing for nonlinear models

What is proximal causal inference in the iid setting?

- Some degree of unmeasured confounding allowed
- Provided two proxies of unmeasured confounder are observed
- One proxy can be related to treatment; the other can be related to outcome
- How are these related to synthetic controls?

### Proximal synthetic controls

- Split control units into two groups: donors (outcomes denoted by W) and non-donor control units (outcomes denoted by Z)<sup>1</sup>
- W defines set of proxies to model Y(0)
- Z defines set of proxies to identify representation of Y(0) based on W
- Key assumption 1: Z<sub>t</sub> ⊥ (Y<sub>t</sub>, W<sub>t</sub>) | U<sub>t</sub> (implied by linear latent factor model)



- Key assumption 2: there exists an outcome confounding bridge function h\* such that E[Y<sub>t</sub>(0) | U<sub>t</sub>] = E[h\*(W<sub>t</sub>) | U<sub>t</sub>].
- $h^*$  is linear if we assume a linear latent factor model
- Shi et al. [2021] showed that

.. 
$$\phi^*(t) := \mathbb{E}[Y_t(1) - Y_t(0)] = \mathbb{E}[Y_t - h^*(W_t)] \text{ for } t > T_0;$$

- 2.  $h^*$  satisfies  $\mathbb{E}[Y_t h^*(W_t) \mid Z_t] = 0$  for  $t \leq T_0$ .<sup>2</sup>
- Estimation based on generalized method of moments (GMM).
- Key contribution:  $h^*$  can be flexibly modeled and need not be linear.
- However,  $h^*$  must be correctly specified.



#### 2 Weighting and doubly robust identification

Consider this (over) simplification to the setting of iid "individuals":

- Regard each time t (not unit i!!!) as the index for "individuals"
- At time *t*, regard control units' outcomes as covariates/proxies for "individual" *t*
- $A_t := \mathbb{1}(t > T_0)$  is treatment indicator for "individual" t
- Suppose that individuals are iid (so  $\phi^*(t) = \phi^*$  is constant)

Consider this (over) simplification to the setting of iid "individuals":

- Regard each time t (not unit i!!!) as the index for "individuals"
- At time *t*, regard control units' outcomes as covariates/proxies for "individual" *t*
- $A_t := \mathbb{1}(t > T_0)$  is treatment indicator for "individual" t
- Suppose that individuals are iid (so  $\phi^*(t) = \phi^*$  is constant)

Under these simplifications,  $\phi^*(t)$  is the "usual ATT" in iid settings.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cui et al. [2020] showed that the influence function of the "usual ATT" is

$$\frac{A_t Y_t}{\Pr(A_t=1)} - (1-A_t)\boldsymbol{q}^*(\boldsymbol{Z}_t) \frac{Y_t - h^*(\boldsymbol{W}_t)}{\Pr(A_t=1)} - A_t \frac{h^*(\boldsymbol{W}_t) - \phi^*}{\Pr(A_t=1)}.$$

- h\* defined as in Shi et al. [2021]
- *q*<sup>\*</sup> is a *treatment confounding bridge function* that captures the weight for treatment assignment:

$$\mathbb{E}[q^*(Z_t) \mid U_t, A_t = 0] = \frac{\Pr(A_t = 1 \mid U_t)}{\Pr(A_t = 0 \mid U_t)}.$$

- Data are not iid.
- $A_t = \mathbb{1}(t > T_0)$  is not random, so  $\Pr(A_t = 1)$  and their definition of  $q^*$  are not meaningful.

I will use  $t_{-}(t_{+})$  to denote a general pre-(post-)treatment time

We need some assumptions similar to iid

- $(Y_t(0), W_t) | U_t$  is identically distributed for all t (implied by linear latent factor model).
- $U_{t_+}$  is identically distributed for all  $t_+$ .<sup>3</sup>

We need some assumptions similar to iid

- $(Y_t(0), W_t) | U_t$  is identically distributed for all t (implied by linear latent factor model).
- $U_{t_+}$  is identically distributed for all  $t_+$ .<sup>3</sup>

We need to define  $q^*$  while avoiding introducing  $A_t$  as a random variable:

• Assume that there exists  $q^*$  that captures a likelihood ratio:

$$\mathbb{E}[q^*(Z_{t_-}) \mid U_{t_-} = u] = \frac{\mathrm{d}P_{U_{t_+}}}{\mathrm{d}P_{U_{t_-}}}(u).$$

<sup>3</sup>Can be relaxed

Hongxiang Qiu et al (Statistics, UPenn)

#### Theorem (Weighting identification)

$$\phi^*(t_+) = \mathbb{E}[Y_{t_+} - q^*(Z_{t_-})Y_{t_-}]$$

and q<sup>\*</sup> satisfies

$$\mathbb{E}[q^*(Z_{t_-}) \mid W_{t_-} = w] = \frac{\mathrm{d}P_{W_{t_+}}}{\mathrm{d}P_{W_{t_-}}}(w).$$

An implicit implication: distribution of  $W_{t_+}$  should be dominated by  $W_{t_-}$ .

æ

#### Theorem (Doubly robust identification)

$$\phi^*(t_+) = \mathbb{E}[Y_{t_+} - q(Z_{t_-})(Y_{t_-} - h(W_{t_-})) - h(W_{t_+})]$$

*if*  $h = h^*$  *or*  $q = q^*$ .

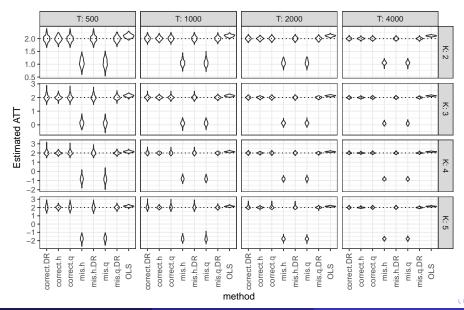
Only need to correctly specify one of  $h^*$  and  $q^*$ .

Doubly robust estimation and inference based on generalized method of moments (GMM).

Methods compared:

- OLS + Proximal synthetic control methods based on h\* only, q\* only, and both h\* and q\*
- Consider cases where
  - both  $h^*$  and  $q^*$  are correctly specified
  - *h*<sup>\*</sup> or *q*<sup>\*</sup> is misspecified

# Simulation: sampling distribution



Hongxiang Qiu et al (Statistics, UPenn)

# Kansas data analysis

- Quarterly data of 50 U.S. sates from 1990–2016 (105 quarters)
- Remove time trend: fit a quadratic curve of time to control states' outcomes and take residuals for all states
- Time trend removal is important to make covariate shift assumption plausible
- Choice of donors W: we run Abadie's original synthetic control method and choose states with large weights: North Dakota, South Carolina, Texas, Washington
- Linear model for h\*
- Log-linear model for q\*: to restrict model complexity, only a subset of non-donor control states are included in the model for q\* (chosen based on similarity to Kansas):
  - 1. Iowa
  - 2. Iowa, South Dakota
  - 3. Iowa, South Dakota, Oklahoma

Image: A image: A

Point estimate (95% confidence interval)

| Method            | tax cut (Q1 2012)       | placebo (Q1 2008)                 |
|-------------------|-------------------------|-----------------------------------|
| Abadie's SC       | -0.048                  | 0.029                             |
| OLS               | -0.069 (-0.087, -0.050) | $0.026~(2.6	imes 10^{-6},~0.052)$ |
| DR                | -0.077 (-0.126, -0.028) | 0.004 (-0.068, 0.077)             |
| DR2               | -0.095 (-0.147, -0.043) | -0.005 (-0.039, 0.030)            |
| DR3               | -0.103 (-0.228, -0.021) | -0.007 (-0.059, 0.046)            |
| Outcome bridge    | -0.104 (-0.150, -0.058) | 0.012 (-0.069, 0.093)             |
| Treatment bridge  | -0.031 (-0.087, 0.024)  | -0.028 (-0.063, 0.008)            |
| Treatment bridge2 | -0.017 (-0.032, -0.002) | -0.042 (-0.056, -0.0027)          |
| Treatment bridge3 | -0.016 (-0.029, -0.003) | -0.048 (-0.097, 0.001)            |

22 / 25

Using ideas from proximal causal inference, we have developed *doubly robust* methods to estimate ATT in synthetic control settings.

4 3 4 3 4 3 4

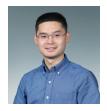
### Collaborators



Xu Shi



Edgar Dobriban



Wang Miao



Eric Tchetgen Tchetgen

arXiv preprint: https://arxiv.org/abs/2210.02014

Hongxiang Qiu et al (Statistics, UPenn)

DR Proximal SC

< ∃⇒

# References

- A. Abadie and J. Gardeazabal. The economic costs of conflict: A case study of the Basque country. *American Economic Review*, 93(1):113–132, 2003. ISSN 00028282. doi: 10.1257/000282803321455188.
- A. Abadie, A. Diamond, and A. Hainmueller. Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program. *Journal* of the American Statistical Association, 105(490):493–505, 2010. ISSN 01621459. doi: 10.1198/jasa.2009.ap08746.
- A. Abadie, A. Diamond, and J. Hainmueller. Comparative Politics and the Synthetic Control Method. *American Journal of Political Science*, 59(2):495–510, 2015. ISSN 15405907. doi: 10.1111/ajps.12116.
- Y. Cui, X. Shi, and W. Miao. Semiparametric proximal causal inference. arXiv preprint arXiv:2011.08411v1, 2020.
- B. Ferman and C. Pinto. Synthetic controls with imperfect pretreatment fit. *Quantitative Economics*, 12(4):1197–1221, 2021. ISSN 1759-7323. doi: 10.3982/qe1596.
- X. Shi, W. Miao, M. Hu, and E. Tchetgen Tchetgen. Theory for identification and Inference with Synthetic Controls: A Proximal Causal Inference Framework. *arXiv* preprint arXiv:2108.13935v3, 2021.

Hongxiang Qiu et al (Statistics, UPenn)

DR Proximal SC

Relaxing stationarity:

- We can drop stationarity assumption on  $U_{t_+}$  and consider an ATT averaged over post-treatment time periods:  $\sum_{t_+=T_0+1}^{T} \phi^*(t_+)\ell(t_+)$  for given importance time weight  $\ell(t_+)$
- Similar GMM estimator, but conservative standard error (because of non-centered moment equation at every *t*)

Covariates:

- Our methods can incorporate covariates into *h*<sup>\*</sup> and *q*<sup>\*</sup> models, similarly to proximal causal inference in iid setting
- Alternatively, they can be included in proxies W or Z.