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Motivation

Emerging area of individualized treatment rules (ITR).

Previous methods assume no unmeasured confounding (e.g., Murphy, 2003;
Robins, 2004; Zhao et al., 2012; Chakraborty and Moodie, 2013; Luedtke and
van der Laan, 2016b).
What if there is unmeasured confounding?

Instrumental variable (IV): another approach to identifying causal effects.
Can we use an IV to estimate an optimal ITR?

Example:
IV: randomized treatment assignment
Treatment: actual treatment status

Especially interested in settings with a treatment resource constraint
(Luedtke and van der Laan, 2016a).
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Motivation

At times, direct intervention on treatment may be impossible or expensive.

Individualized encouragement rule (IER): intervention on IV.

Evaluate optimal rules: average benefit under optimal rule (compared to a
reference rule).
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Problem setup

Observe iid O = (W ,Z ,A,Y ) ∼ P0:
W ∈ W: baseline covariates.
Z ∈ {0, 1}: binary IV.
A ∈ {0, 1}: binary treatment status (treatment vs control).
Y ∈ R: outcome of interest (larger values are preferable).

(Stochastic) individualized rule: d : W→ [0, 1] (prob of treatment)

Counterfactuals:
A(z): potential treatment status corresponding to Z = z
Y (z, a): potential outcome corresponding to (Z , A) = (z, a)

Given treatment resource constraint: P0(receiving treatment) ≤ κ.
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IV conditions

Relevance: |P0(A = 1 | Z = 1,W )− P0(A = 1 | Z = 0,W )| > δA

Exclusion restriction: Y (0, a) = Y (1, a) =: Y (a)

Independence: Z ⊥⊥ U |W

Z : IV/encouragement.

U: unobserved confounder.

W

Z A Y

U
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Case I: intervention on treatment

For an ITR t : W→ [0, 1], Y (t) := counterfactual outcome under t.

The optimal ITR t0 solves

maximize E[Y (t)] subject to E[t(W )] ≤ κ .

The impact of implementing the optimal ITR can be measured via its average
treatment effect (ATE) relative to a given reference ITR tr :

E[Y (t0)− Y (tr )]
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Case II: intervention on encouragement

For an IER e : W→ [0, 1], A(e) := counterfactual treatment under e.

The optimal IER e0 solves

maximize E[Y (A(e))] subject to E[A(e)] ≤ κ .

The impact of implementing the optimal IER can be measured via its average
encouragement effect (AEE) relative to a given reference IER er :

E[Y (A(e0))− Y (A(er ))]
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Additional notations

IV → outcome effect (conditional average encouragement effect):

∆Y
0 (w) = E0[Y |Z = 1,W = w ]− E0[Y |Z = 0,W = w ]

Treatment regression:

µA
0 (z ,w) = E0[A | Z = z ,W = w ]

IV → treatment effect:

∆A
0 (w) = µA

0 (1,w)−µA
0 (0,w) = E0[A | Z = 1,W = w ]−E0[A | Z = 0,W = w ]

Wald estimand:

∆0(w) = ∆Y
0 (w)

∆A
0 (w)

= E0[Y | Z = 1,W = w ]− E0[Y | Z = 0,W = w ]
E0[A | Z = 1,W = w ]− E0[A | Z = 0,W = w ]
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Case I: intervention on treatment

Key identifying conditions (slightly relaxed version of Wang and
Tchetgen Tchetgen (2018)):

Y (a) ⊥⊥ (A,Z ) | (W ,U).

One of the following sets of conditions holds:
(1) (a) (Uncorrelated IV) Cov(Y (0), Z |W ) = 0

(b) (No unmeasured treatment-outcome effect modification)

E [Y (1)− Y (0) |W , U] = E [Y (1)− Y (0) |W ]

(2) (a) (Independent IV) Z ⊥⊥ U |W
(b) (Independent compliance)

E [A(Z) | Z = 1, W , U]− E [A(Z) | Z = 0, W , U]
= E0[A | Z = 1, W ]− E0[A | Z = 0, W ]

Hongxiang Qiu et al. (U Washington) Optimal individualized rule with IV 11 / 33



Case I: average treatment effect

ATE can be written as a summary of P0.

Theorem (Identification of ATE)

E [Y (1)− Y (0) |W ] = ∆0(W )

E [Y (t)− Y (tr )] = E0 [{t(W )− tr (W )}∆0(W )] for any ITR t

The optimization problem in ITR t is equivalent to

maximize E0[t(W )∆0(W )] subject to E0[t(W )] ≤ κ .

Hongxiang Qiu et al. (U Washington) Optimal individualized rule with IV 12 / 33



Case I: optimal ITR

What does an optimal ITR look like?

0.8 -0.2 0.5 0.1 0
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Case I: optimal ITR

0.8 -0.20.5 0.1 0

1. Sort subgroups according to ∆0(W ) (from high to low).

2. Assign treatment to those with highest (and positive) conditional ATE
∆0(W ) until treatment runs out.

t0(w) = I
{

∆0(w) > τT
0
}
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Case II: intervention on encouragement

Key identifying condition: Z ⊥⊥ (A(z),Y (a)) |W

AEE can be written as a summary of P0.

Theorem (Identification of AEE)

E[Y (A(1))− Y (A(0)) |W ] = ∆Y
0 (W )

E [Y (A(e))− Y (A(er ))] = E0
[
{e(W )− er (W )}∆Y

0 (W )
]
for any IER e
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Case II: optimal IER

The optimization problem in IER e is equivalent to

maximize E0[e(W )∆Y
0 (W )]

subject to E0[e(W )µA
0 (1,W ) + (1− e(W ))µA

0 (0,W )] ≤ κ ,

namely,

maximize E0[e(W )∆Y
0 (W )]

subject to E0[e(W )∆A
0 (W )] ≤ κ− E0[µA

0 (0,W )] ,

Assume that ∆A
0 > 0 and κ− E0[µA

0 (0,W )] > 0.
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Case II: optimal IER

What does an optimal IER look like?

View as a fractional knapsack problem:

Subgroup with same W : item

Conditional AEE: ∆Y
0 (W ) = value

Additional proportion treated:
∆A

0 (W ) = weight

Max additional proportion treated:
κ− E0[µA

0 (0,W )] = total weight capacity

ξ0(W ) := ∆Y
0 (W )/∆A

0 (W ) = unit value

$4 12 kg

$2 2 kg

$1 1 kg

$2 1 kg

$10 4 kg

?
15 kg
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Case II: optimal IER

1. Sort subgroups according to ξ0(W ) from high to low

2. Assign encouragement to treatment to those with highest (and positive)
ξ0(W ) until treatment runs out

e0(w) = I
(
ξ0(w) > τE

0
)
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Overview of targeted minimum-loss based estimation

Goal: estimate Φ(P0) (ATE, AEE)

Seemingly natural approach:
Estimate P0 with P̃n
Plug in: estimate Φ(P0) with Φ(P̃n)

Problem: typically inefficient and not asymptotically normal.

Efficient and asymptotically normal plug-in estimator using TMLE.

Construct Wald CI based on asymptotic variance.
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Overview of proposed procedure

1. Flexibly estimate relevant regression functions.

2. Estimate optimal ITR/IER with sample analogue.

3. Targeted estimation of ATE/AEE. The resulting estimator is asymptotically
normal under conditions.
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Simulation

Estimands:
Resource constrained AEE: AEE of e0 with κ = 0.68
ATE: ATE of t0 without resource constraint (κ = 1)
Resource constrained ATE: ATE of t0 with κ = 0.25

Data-generating mechanism has strong unmeasured treatment-outcome
confounding.

Use sample splitting when estimating the optimal rule
avoid a main source of finite-sample positive bias
possible finite-sample negative bias
valid 97.5% confidence lower bound, even under poorly estimated optimal rule

Hongxiang Qiu et al. (U Washington) Optimal individualized rule with IV 22 / 33



Simulation: AEE with resource constraints
Performance measure Sample size IV
95% Wald CI coverage 500 71%

1000 74%
4000 84%
16000 90%

97.5% confidence lower 500 96%
bound coverage 1000 98%

4000 98%
16000 98%
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Simulation: ATE
Performance measure Sample size IV Confounder
95% Wald CI coverage 200 97% 3%

500 95% < 1%
1000 93% < 1%
2000 92% < 1%

97.5% confidence lower 200 > 99% 3%
bound coverage 500 > 99% < 1%

1000 > 99% < 1%
2000 > 99% < 1%
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Simulation: ATE with resource constraints
Performance measure Sample size IV Confounder
95% Wald CI coverage 200 96% 83%

500 95% 84%
1000 93% 87%
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Discussion

Estimators of optimal individualized treatment/encouragement rule using an
IV under treatment resource constraints.

Inference on average causal effects of the optimal rule under a locally
nonparametric model.

Cui and Tchetgen Tchetgen (2020) studied a similar problem with IV.
Cui and Tchetgen Tchetgen needed not consider intervention on
encouragement or resource constraints.
Weaker identifying conditions for optimal ITR (not ATE).
Cui and Tchetgen Tchetgen’s optimal ITR among compliers = our optimal IER

Han (2020) and Cui and Tchetgen Tchetgen (2021) proposed even weaker
identifying conditions for optimal ITR.

Sun et al. (2021) studied a similar problem with random treatment cost and
treatment cost constraint.

Our methods for IER and AEE can be readily adapted to this setting.
We additionally provide statistical inference on AEE.
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Thank you!

Questions?
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Additional notations

For any distribution P on observed data*, define
µZ

P : w 7→ EP(Z |W = w) (IV propensity)
µA

P : (z ,w) 7→ EP (A | Z = z ,W = w) (Treatment regression)
µY

P : (z ,w) 7→ EP (Y | Z = z ,W = w) (Outcome regression)
∆A

P : w 7→ µA
P(1,w)− µA

P(0,w) (IV → treatment effect)
∆Y

P : w 7→ µY
P (1,w)− µY

P (0,w) (IV → outcome effect)
∆P : w 7→ ∆Y

P (w)/∆A
P(w) (Wald estimand)

*For P0, we use 0 instead of P0 in the subscript.
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Formal optimal ITR

Theorem (Identifying optimal ITR)
With ηT

0 := inf {η : P0 (∆0(W ) > η) ≤ κ} and the threshold τT
0 := max

{
ηT
0 , 0

}
,

the optimal ITR is

t0(w) :=


κ−P0{∆0(W )>τT

0 }
P0{∆0(W )=τT

0 }
: ∆0(w) = τT

0 > 0,

P0{∆0(W ) = τT
0 } > 0

I
{

∆0(w) > τT
0
}

: otherwise.
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Formal optimal IER

Theorem (Identifying optimal IER)
With ηE

0 := inf
{
η : E0

[
I(ξ0(W ) > η)∆A

0 (W )
]
≤ κ− E0[µA

0 (0,W )]
}
and

τE
0 := max

{
ηE
0 , 0
}
, the optimal IER is

e0(w) =


κ−E0[µA

0 (0,W )]−E0[I(ξ0(W )>τE
0 )∆A

0 (W )]
E0[I(ξ0(W )=τE

0 )∆A
0 (W )] : ξ0(w) = τE

0 > 0,

E0
[
I(ξ0(W ) = τE

0 )µ̄A
0 (W )

]
> 0

I
(
ξ0(w) > τE

0
)

: otherwise.
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