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Motivation

Statistical machine learning is increasingly popular and successful.

A common challenge: limited data available from the target domain/population, despite
existing large related source data sets.1

In principle, it may be valid to use target population data alone, but it is desirable to
leverage relevant source data to increase efficiency/accuracy.

Challenge: Dataset shift, source and target populations differ

1I will use these colors to highlight source and target population throughout
Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 3 / 58
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Motivation: Comparative Effectiveness

Example: Multiphase sampling (Chakrabortty and Cai, 2018)
1. Draw a large sample D1 from the target population

2. Measure cheap variables Z1 in electronic health records (EHR) for all individuals in D1
E.g., age, sex, diagnosis of rheumatoid arthritis (RA) (a systemic auto-immune disease),
medical history

3. Measure expensive variable Y for a random subsample D2 ⊂ D1
E.g., biomarker anti-CCP

4. Wish to study the association between the outcome Y (only observed in D2) and some
clinical variables X of Z1

Considering observed data, an equivalent formulation in terms of dataset shift:
Target population data: D2: both Z1 and Y are observed

Source population data: D1 \ D2: Z1 observed, Y missing

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 4 / 58
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Motivation: HIV Epidemiology

Example: To improve HIV treatment/prevention, wish to predict HIV risk in peri-urban
communities with low community antiretroviral therapy (ART) coverage to identify people
with high risk. Wish to leverage data from urban & rural communities to improve prediction
accuracy.
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Figure: Qiu et al. (2022)

This is the main example for the rest of this talk.
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Motivation: How well does a given predictor perform in the target
population?

We study the estimation of a target population risk:

E[ ℓ(Z )︸ ︷︷ ︸
user-specified loss

| target population]

Example: Z = (X , Y ), given predictor f
Mean squared error: ℓ(Z ) = (Y − f (X ))2

Cross-entropy loss (negative Bernoulli log-likelihood):
ℓ(Z ) = −Y log(f (X )) − (1 − Y ) log(1 − f (X ))

Classification error: ℓ(Z ) = 1(Y ̸= f (X ))
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Risk has a central role in training prediction/classification models

We often minimize the risk when training a model and evaluate the performance of a
model by its risk.

To construct prediction sets, we often want to estimate the coverage error (a risk)
precisely (Vovk, 2013; Qiu et al., 2022; Yang et al., 2022).
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Motivation

For source data to be helpful, source and target populations need to be related.

Partly motivated by causal inference and data fusion, we consider a general dataset shift
condition.

Multiple valid methods to leverage source data. Which method is efficient (asymptotically
normal, smallest asymptotic variance)?

More precise risk estimators =⇒ better distinction between predictors.

Can we also achieve robustness or multiple robustness (against misspecification of some
nuisance functions)?

To address these estimation questions, we rely on common tools used in causal
inference—semiparametric efficiency theory.
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Related works

Rich literature on [transfer learning]/[domain adaptation]/[dataset shift], but most papers
study the case where target population data is not fully observed, a different scenario.

Some works study estimation of mean or (generalized) linear models with both labeled
and unlabeled target population data a.k.a. semi-supervised learning (Azriel et al. (2021),
Gronsbell et al. (2022), Zhang et al. (2021)).
Particular problems under a particular type of dataset shift.

Another related area is data fusion with an emphasis on causal inference applications
(Chakrabortty and Cai, 2018; Chatterjee et al., 2016; Li and Luedtke, 2021; Robins et al.,
1995). Target population data might not be fully observed.

A general framework for efficient and robust risk estimation under general forms of
dataset shift is lacking.
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Problem setup

Observe i.i.d. copies of O = (Z , A):
Actual data Z ∈ Z: e.g., Z = (X , Y )
Population index A ∈ A:

A =
{

0 target population
another value, e.g., 1 a source population

Estimand of interest: r∗ := E[ℓ(Z ) | A = 0].

Without any additional assumption, a sensible estimator is the empirical mean over target
population data:

r̂np :=
∑n

i=1 1(Ai = 0)ℓ(Zi)∑n
i=1 1(Ai = 0) ,

but it may be inaccurate given limited target population data, particularly with relevant
source population data.
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A general dataset shift condition

Let Z be decomposed into K components (Z1, . . . , ZK )

Define Z̄0 := ∅, Z̄k := (Z1, . . . , Zk) for k = 1, . . . , K

Condition adapted from Li and Luedtke (2021):

Condition (Sequential conditionals)
For every k, there exists a known (possibly empty) set Sk ⊂ A \ {0} such that, for all a ∈ Sk ,{

Zk | Z̄k−1 = z̄k−1, A = a
} d=

{
Zk | Z̄k−1 = z̄k−1, A = 0

}
for all z̄k−1 in the common support of Z̄k−1 | A = 0 and Z̄k−1 | A = a.

Sk can be selected based on prior knowledge (e.g., study design, causal mechanism). We can
also test “sequential conditionals” condition (details in paper).

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 12 / 58



A general dataset shift condition

Let Z be decomposed into K components (Z1, . . . , ZK )

Define Z̄0 := ∅, Z̄k := (Z1, . . . , Zk) for k = 1, . . . , K
Condition adapted from Li and Luedtke (2021):

Condition (Sequential conditionals)
For every k, there exists a known (possibly empty) set Sk ⊂ A \ {0} such that, for all a ∈ Sk ,{

Zk | Z̄k−1 = z̄k−1, A = a
} d=

{
Zk | Z̄k−1 = z̄k−1, A = 0

}
for all z̄k−1 in the common support of Z̄k−1 | A = 0 and Z̄k−1 | A = a.

Sk can be selected based on prior knowledge (e.g., study design, causal mechanism). We can
also test “sequential conditionals” condition (details in paper).

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 12 / 58



A general dataset shift condition

Let Z be decomposed into K components (Z1, . . . , ZK )

Define Z̄0 := ∅, Z̄k := (Z1, . . . , Zk) for k = 1, . . . , K
Condition adapted from Li and Luedtke (2021):

Condition (Sequential conditionals)
For every k, there exists a known (possibly empty) set Sk ⊂ A \ {0} such that, for all a ∈ Sk ,{

Zk | Z̄k−1 = z̄k−1, A = a
} d=

{
Zk | Z̄k−1 = z̄k−1, A = 0

}
for all z̄k−1 in the common support of Z̄k−1 | A = 0 and Z̄k−1 | A = a.

Sk can be selected based on prior knowledge (e.g., study design, causal mechanism). We can
also test “sequential conditionals” condition (details in paper).

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 12 / 58



A general dataset shift condition

Figure: Blocks with same colors are shared conditional distributions. Blocks with * are not assumed to
share same conditional distributions.
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Common dataset shift conditions are special cases of “sequential
conditionals”

Full-data covariate shift: {Y | X , A = 1} d= {Y | X , A = 0} (similar to
unconfoundedness/ignorability; covariate-dependent sampling)

Example: Predict HIV risk Y with baseline covariates X using data from target and
source communities

Full-data label shift: {X | Y , A = 1} d= {X | Y , A = 0} (anti-causal; outcome-dependent
sampling)

Example (case-cohort study): Form a cohort from the target population, measure baseline
covariates X and HIV risk Y for a random subset and all cases.
Concept shift in the features: {X | A = 1} d= {X | A = 0} (semi-supervised learning;
multiphase sampling)

Concept shift in the labels: {Y | A = 1} d= {Y | A = 0}

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 14 / 58



Common dataset shift conditions are special cases of “sequential
conditionals”

Full-data covariate shift: {Y | X , A = 1} d= {Y | X , A = 0} (similar to
unconfoundedness/ignorability; covariate-dependent sampling)

Example: Predict HIV risk Y with baseline covariates X using data from target and
source communities
Full-data label shift: {X | Y , A = 1} d= {X | Y , A = 0} (anti-causal; outcome-dependent
sampling)

Example (case-cohort study): Form a cohort from the target population, measure baseline
covariates X and HIV risk Y for a random subset and all cases.

Concept shift in the features: {X | A = 1} d= {X | A = 0} (semi-supervised learning;
multiphase sampling)

Concept shift in the labels: {Y | A = 1} d= {Y | A = 0}

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 14 / 58



Common dataset shift conditions are special cases of “sequential
conditionals”

Full-data covariate shift: {Y | X , A = 1} d= {Y | X , A = 0} (similar to
unconfoundedness/ignorability; covariate-dependent sampling)

Example: Predict HIV risk Y with baseline covariates X using data from target and
source communities
Full-data label shift: {X | Y , A = 1} d= {X | Y , A = 0} (anti-causal; outcome-dependent
sampling)

Example (case-cohort study): Form a cohort from the target population, measure baseline
covariates X and HIV risk Y for a random subset and all cases.
Concept shift in the features: {X | A = 1} d= {X | A = 0} (semi-supervised learning;
multiphase sampling)

Concept shift in the labels: {Y | A = 1} d= {Y | A = 0}
Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 14 / 58



Table of Contents

1 Motivation

2 A general dataset shift condition

3 Efficient and multiply robust estimation

4 Data analysis

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 15 / 58



How to leverage source data under sequential conditionals?

Example: Estimate prediction error of a given predictor f :

Pr(Y ̸= f (X ) | A = 0) = E[1(Y ̸= f (X ))︸ ︷︷ ︸
ℓ(X ,Y )

| A = 0]

X = covariate (age, sex, etc.), Y = binary outcome (HIV seroconversion)

Data sets:
Fully observed data (X , Y ) from peri-urban communities with low ART coverage (A = 0)

Covariate data X with missing outcome Y from peri-urban communities with low ART
coverage (A = 1)

Fully observed data (X , Y ) from urban & rural communities (A = 2)

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 16 / 58
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How to leverage source data under sequential conditionals?

With Z = (Z1 = X , Z2 = Y ), relevant source data set indices Sk

S1 = {1}: {X | A = 1} d= {X | A = 0}
Shared covariate distribution between the fully observed data from peri-urban
communities and covariate data from peri-urban communities

S2 = {2}: {Y | X , A = 2} d= {Y | X , A = 0}
Shared distribution of HIV seroconversion given covariate between peri-urban
communities and urban & rural communities

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 17 / 58



How to leverage source data under sequential conditionals?

By Law of Iterated Expectation, the risk of interest can be written as

r∗ = E[ℓ(X , Y ) | A = 0] = E[E[ℓ(X , Y ) | X , A = 0]︸ ︷︷ ︸
E∗(X)

| A = 0]

HIV risk prediction example: E∗(X ) = Pr(Y ̸= f (X ) | X , A = 0) is the prediction error of the
given predictor f conditional on covariate X

Inner expectation E[ℓ(X , Y ) | X , A = 0] concerns the conditional distribution Y | X
We can leverage data from urban & rural communities (A = 2) to estimate this
expectation E∗

Outer expectation E[E∗(X ) | A = 0] concerns the marginal distribution of covariate X
We can leverage covariate data from peri-urban communities (A = 1) to estimate this
expectation
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How to leverage source data under sequential conditionals?

r∗ = E[E[ℓ(X , Y ) | X , A ∈ {0, 2}]︸ ︷︷ ︸
E∗(X)

| A ∈ {0, 1}]

One intuitive plug-in approach:
1. Estimate E∗(X ) with Ê by regressing ℓ(X , Y ) on X in the subsample with A ∈ {0, 2}

(e.g., linear regression, neural networks, etc.)
2. Estimate risk r∗ by the empirical mean of Ê(X ) in the subsample with A ∈ {0, 1}:∑n

i=1 1(Ai ∈ {0, 1})Ê(Xi)∑n
i=1 1(Ai ∈ {0, 1})
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Efficient and multiply robust estimation

We wish to use flexible machine learning (ML) methods to estimate E∗ (slower
convergence rate)

However, in general, such a plug-in estimator would be dominated by the slow
convergence of the ML estimator and would be inefficient (McGrath and Mukherjee,
2022).

We have developed an estimator r̂ based on the efficient influence function to address this
issue
Generally need to estimate two sets of nuisance functions flexibly:

1. the mean loss conditional on variables Z̄k (e.g., E∗)
2. the odds of target vs. relevant source population conditional on variables Z̄k (similar to

weighting)
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Efficient and multiply robust estimation

Theorem (Informal)

(Efficiency) If conditional mean loss and conditional odds are all estimated
reasonably well, then our proposed estimator r̂ is asymptotically normal and efficient
(smallest asymptotic variance)

(Multiple robustness) If conditional mean loss or conditional odds is estimated
consistently for every pair, then our proposed estimator r̂ is consistent

Formal statement: Theorem 1 in paper
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Data analysis: HIV risk prediction under full-data covariate shift

Table: Risk estimates from HIV risk prediction data. “Gold standard”: Risk estimate from large
held-out validation dataset is 0.24 (95% CI: 0.22–0.26).

Dataset Shift Condition Estimate S.E. 95% CI P-value
None 0.24 0.060 (0.12, 0.36) —
Full-data covariate shift 0.19 0.026 (0.14, 0.25) 0.41
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“Risk” and “loss” can be interpreted broadly

To estimate the target population mean (e.g., HIV prevalence), take “loss”
ℓ(z) = 1(HIV+)

To estimate a target population quantile, consider ℓ ranging over {z 7→ 1(z ≤ t) : t ∈ R}.

Any functional related to expectation may fit into our framework.
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A general dataset shift condition: more sophisticated examples

Improving lung disease diagnosis with CT scans (Christodoulidis et al., 2017):
X1: image
X2: texture
Y : diagnosis

In addition to the labeled CT scans, might wish to leverage a large texture dataset
containing (X1, X2) and assume

{X2 | X1, A = 1} d= {X2 | X1, A = 0}

HIV risk prediction example in next slides
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Efficiency bound

Conditional odds of source vs target:

θk−1
∗ : z̄k−1 7→ P∗(A ∈ Sk | Z̄k−1 = z̄k−1)

P∗(A = 0 | Z̄k−1 = z̄k−1)
,

Conditional mean loss (recursive definition): ℓK
∗ := ℓ,

ℓk
∗ : z̄k 7→ EP∗ [ℓk+1

∗ (Z̄k+1) | Z̄k = z̄k , A ∈ S ′
k+1],

We can show that ℓk
∗(z̄k) = EP∗ [ℓ(Z ) | Z̄k = z̄k , A = 0] for z̄k in the support of

Z̄k−1 | A = 0.

Marginal probabilities of populations: πa
∗ := P∗(A = a).

Collections of nuisance functions: θ∗ := (θk
∗ )K−1

k=1 , ℓ∗ := (ℓk
∗)K−1

k=1 , π∗ := (πa
∗)a∈A.

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 31 / 58



Efficiency bound

Pseudo-loss/unbiased transformation (Rotnitzky et al. (2006) JASA):

T (ℓ, θ, π) : o 7→
K∑

k=2

1(a ∈ S ′
k)

π0(1 + θk−1(z̄k−1))
{

ℓk(z̄k) − ℓk−1(z̄k−1)
}

+ 1(a ∈ S ′
1)

π0(1 + θ0)ℓ1(z1).

Li and Luedtke (2021) showed that the efficient influence function is

DSC(ℓ, θ, π, r) : o 7→ T (ℓ, θ, π)(o) − 1(a ∈ S ′
1)

π0(1 + θ0) r .

In other words, an efficient estimator r̂ must satisfy

r̂ = r∗ + 1
n

n∑
i=1

DSC(ℓ∗, θ∗, π∗, r∗)(Oi) + op(n−1/2).
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Cross-fit risk estimator

Fold V

Fold 1

.

.

.
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Cross-fit risk estimator

1: Randomly split data into V folds with index sets Iv (v = 1, . . . , V ).
2: for v = 1, . . . , V do
3: For k ∈ {1, 2}, estimate θk by θ̂k

v using data out of fold v
4: Set π̂a

v := |Iv |−1 ∑
i∈Iv 1(Ai = a) for all a ∈ A

5: for k = 2, 1 do ▷ Sequential regression
6: Estimate ℓk

∗ by ℓ̂k
v using data out of fold v by regressing ℓ̂k+1

v (Z̄k+1) on covariate Z̄k
in the subsample A ∈ {0} ∪ Sk+1.

7: Estimator r̂v is the solution in r to: ▷ Can be solved explicitly∑
i∈Iv

DSC(ℓ̂v , θ̂v , π̂v , r)(Oi) = 0.

8: Cross-fit estimator r̂ := 1
n

∑V
v=1 |Iv |r̂v (average of r̂v over folds).
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Efficiency and multiple robustness of cross-fit estimator

Define oracle estimator hk−1 of ℓk−1
∗ based on ℓ̂k

v , evaluated under the true distribution P∗:

hk−1
v : z̄k−1 7→ EP∗ [ℓ̂k

v (Z̄k) | Z̄k−1 = z̄k−1, A ∈ S ′
k ].

Theorem

(Efficiency) If, for all v and all k, ∥ 1
1+θ̂k

v
− 1

1+θk
∗
∥ and ∥ℓ̂k

v − hk
v ∥ are both op(1) and their

product is op(n−1/2), then r̂ is efficient.

(2K−1-robustness) If, for all v and all k, ∥ 1
1+θ̂k

v
− 1

1+θk
∗
∥ or ∥ℓ̂k

v − hk
v ∥ is op(1), then r̂ is

consistent.
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Crucial role of parameterization

Since

ℓ2
∗(X1, X2) = EP∗ [ℓ(Z ) | X1, X2, A = 0],

ℓ1
∗(X1) = EP∗ [ℓ(Z ) | X1, A = 0],

why not obtain ℓ̂v by directly regressing loss ℓ(Z ) on covariate (X1, X2) or X1 in the target
population data?

Heuristically, our sequential regression approach leverages the “sequential conditionals”
condition.
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Crucial role of parameterization

Theoretically:
One term in the second-order bias of r̂ takes the form

EP∗

[(
1

1 + θ̂2
v (X1, X2)

− 1
1 + θ2

∗(X1, X2)

) (
ℓ̂2

v (X1, X2) − h2
v (X1, X2)

)
| A ∈ {0, 2, 3}

]
+ EP∗

[(
1

1 + θ̂1
v (X1)

− 1
1 + θ1

∗(X1)

) (
ℓ̂1

v (X1) − h1
v (X1)

)
| A ∈ {0, 1}

]
Natural to require ℓ̂k

v to be close to the oracle estimator hk
v , not necessarily to ℓk

∗ .

This difference is crucial for achieving 2K−1-robustness.
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Crucial role of parameterization

EP∗

[(
1

1 + θ̂2
v (X1, X2)

− 1
1 + θ2

∗(X1, X2)

) (
ℓ̂2

v (X1, X2) − h2
v (X1, X2)

)
| A ∈ {0, 2}

]
+ EP∗

[(
1

1 + θ̂1
v (X1)

− 1
1 + θ1

∗(X1)

) (
ℓ̂1

v (X1) − h1
v (X1)

)
| A ∈ {0, 1}

]
(1)

If we obtain conditional mean loss estimators ℓ̂v by direct regression:
Suppose that ℓ̂2

v is inconsistent; ℓ̂3
v = ℓ and ℓ̂1

v are consistent.

To make (1) small, we would need both 1/(1 + θ̂2
v ) and 1/(1 + θ̂1

v ) to be consistent.

This approach might not achieve 2K−1-robustness: the estimator may still be
inconsistent, if, for every k ∈ {1, 2}, only one of ℓ̂k

v and 1/(1 + θ̂k
v ) is inconsistent.
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What if “sequential conditionals” condition fails?

Define

∆v :=
∑

a∈S′
1
πa

∗∑
a∈S′

1
π̂a

v

K∑
k=1

EP∗

[
hk−1

v (Z̄k−1) − ℓ̂k
v (Z̄k) | A = 0

]
and ∆ := n−1 ∑V

v=1 |Iv |∆v (average of ∆v over folds).
Both ∆v and ∆ are zero under “sequential conditionals”.

∆ is the bias of r̂ due to failure of “sequential conditionals”.

If ℓ̂k
v or 1/(1 + θ̂k

v ) is consistent, r̂ − ∆ is consistent for r∗

A trade-off between efficiency and robustness.
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Concept shift: notations

From now on, Z = (X , Y ) and A ∈ {0, 1}.

Concept shift in the features: {X | A = 1} d= {X | A = 0}

Define conditional mean loss

E∗ : x 7→ EP∗ [ℓ(X , Y ) | X = x , A = 0]

and probability of target population ρ∗ := P∗(A = 0).

According to the results for “sequential conditionals”, the efficient influence function is

DXcon(ρ, E , r) : o 7→ 1(a = 0)
ρ

{ℓ(x , y) − E(x)} + E(x) − r .
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Can we check whether “sequential conditionals” holds?

The nonparametric estimator r̂np of r∗ is always valid regardless of whether “sequential
conditionals” holds

We can use r̂np as an anchor to test whether r̂ is consistent for r∗ or whether “sequential
conditionals” holds.
If “sequential conditionals” holds, then

√
n(r̂ − r̂np) d→ N

(
0, σ2

∗,np − σ2
∗,SC

)
.

After computing the estimators r̂np and r̂ with respective standard errors SE1 and SE2,
we can immediately compute the test statistic

r̂ − r̂np

(SE2
1 − SE2

2)1/2 ,

which is approximately N(0, 1) if “sequential conditionals” holds.
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Concept shift: efficiency bound and gain

According to the results for “sequential conditionals”, the efficient influence function is

DXcon(ρ, E , r) : o 7→ 1(a = 0)
ρ

{ℓ(x , y) − E(x)} + E(x) − r .

The relative efficiency gain from using an efficient estimator vs. r̂np is

1 − efficient asymptotic variance
asymptotic variance of r̂np

= (1 − ρ∗)EP∗

[
(E∗(X ) − r∗)2]

EP∗ [EP∗ [{ℓ(X , Y ) − E∗(X )}2 | A = 0, X ]] + EP∗ [{E∗(X ) − r∗}2]

Variability of ℓ(X , Y ) due to X
Variability of ℓ(X , Y ) not due to X
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Concept shift: efficiency bound and gain

To gain large efficiency, P∗ should satisfy:
1. ρ∗ is small, i.e., limited target population data
2. In the target population, variability of ℓ(X , Y ) due to X is large compared to variability of

ℓ(X , Y ) not due to X

More on item 2 in MSE estimation example:
ℓ(x , y) = (y − f (x))2 for a given predictor f
Y = µ∗(X ) + ϵ where ϵ ⊥⊥ X
Variability of ℓ(X , Y ) due to X is determined by the bias f − µ∗

Variability of ℓ(X , Y ) not due to X is determined by ϵ

We gain large efficiency for f far from the truth µ∗ (heterogeneously)
An extension of results in Azriel et al. (2021) (linear regression under concept shift) to
general risk estimation problem
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Concept shift: efficiency & fully robust regularity and asymptotic linearity

The cross-fit estimator r̂Xcon follows from “sequential conditionals”

Rely on out-of-fold estimator Ê−v of E∗

Theorem
If ∥Ê−v − E∞∥ = op(1) for some function E∞, then the cross-fit estimator r̂Xcon is regular and
asymptotically linear:

r̂Xcon − r∗

= 1
n

n∑
i=1

{
DXcon(ρ∗, E∞, r∗)(Oi) + EP∗ [E∞(X )] − r∗

ρ∗
(1 − Ai − ρ∗)

}
+ op(n−1/2).

If E∞ = E∗, then r̂Xcon is efficient.

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 44 / 58



Concept shift: efficiency & fully robust regularity and asymptotic linearity

The cross-fit estimator r̂Xcon follows from “sequential conditionals”

Rely on out-of-fold estimator Ê−v of E∗
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Full-data covariate shift: notations

Full-data covariate shift: Y ⊥⊥ A | X .

Define conditional mean loss

L∗ : x 7→ EP∗ [ℓ(X , Y ) | X = x ]

and propensity score for target population

g∗ : x 7→ P∗(A = 0 | X = x).
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Full-data covariate shift: efficiency bound and gain

The efficient influence function is

Dcov(ρ, g , L, r) : o 7→ g(x)
ρ

{ℓ(x , y) − L(x)} + 1(a = 0)
ρ

{L(x) − r}.

The relative efficiency gain from using an efficient estimator vs r̂np is

1 − efficient asymptotic variance
asymptotic variance of r̂np

= E
[
g∗(X )(1 − g∗(X ))EP∗

[
{ℓ(X , Y ) − L∗(X )}2 | X

]]
EP∗ [g∗(X )EP∗ [{ℓ(X , Y ) − L∗(X )}2 | X ]] + EP∗ [g∗(X ){L∗(X ) − r∗}2]

Variability of ℓ(X , Y ) due to X

Variability of ℓ(X , Y ) not due to X
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Simulation: concept shift

Estimate MSE in five scenarios (ρ∗ = 0.1):
(A) No efficiency gain: f = µ∗

(B) Little efficiency gain: f ≈ µ∗

(C) Large efficiency gain: f far from µ∗

(D) Very large efficiency gain: f far from µ∗ and no noise (ϵ = 0)

(E) Concept shift does not hold: {X | A = 1}
d
̸= {X | A = 0}

Three estimators:
np: straightforward but imprecise nonparametric estimator r̂np

Xconshift: r̂Xcon with consistent Ê−v

Xconshift,mis.E: r̂Xcon with inconsistent Ê−v
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Simulation: Violin plot of sampling distributions
n: 500 n: 1000 n: 2000

scenario: A
scenario: B

scenario: C
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Full-data covariate shift: efficiency bound and gain

To gain large efficiency, P∗ should satisfy:
1. g∗ is small, i.e., limited data from target population
2. Variability of ℓ(X , Y ) not due to X is large compared to variability of ℓ(X , Y ) due to X

Item 2 is the opposite of the case under concept shift in the features.
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Full-data covariate shift: cross-fit estimator

We use a similar cross-fit estimator r̂cov involving out-of-fold estimators L̂−v of L∗ and
ĝ−v of g∗.
Asymptotic results similar to the general “sequential conditionals”, in contrast to concept
shift:

r̂cov is efficient if both L̂−v and ĝ−v are consistent with product rate op(n−1/2)
r̂cov is consistent if L̂−v or ĝ−v is consistent (double robustness)
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Full-data covariate shift: impossibility of efficiency & fully robust RAL

Lemma
Under the parameterization (PX , PA|X , PY |X ) of a distribution P, suppose that
IF(P∗,X , P∗,A|X , P∗,Y |X , r∗) is an influence function for estimating r∗ at P∗, and so is
IF(P∗,X , PA|X , PY |X , r∗), for arbitrary (PA|X , PY |X ). Then, IF(P∗,X , PA|X , PY |X , r∗) equals the
influence function of r̂np.

Interpretation: if an estimator r̂ ′ of r∗ is regular and asymptotically linear even if both PA|X
and PY |X are misspecified, then r̂ ′ must be asymptotically equivalent to r̂np and thus achieve
no efficiency gain.

The same holds under the parameterization (PA, PX |A, PY |X ).
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Simulation: full-data covariate shift

Five scenarios (Pr(A = 0) = 0.1):
(A) f is the true optimal predictor; noisy outcome Y (very large efficiency gain)
(B) f is a good predictor (large efficiency gain)
(C) f is a poor predictor (little efficiency gain)
(D) f is a poor predictor; deterministic outcome Y given covariate X (no efficiency gain)
(E) Covariate shift does not hold: Y ̸⊥⊥ A | X
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Simulation: Violin plot of sampling distributions
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Simulation findings

When covariate shift holds,
both our proposed estimator r̂ and the nonparametric estimator r̂np appear approximately
normal

when one nuisance function estimator is inconsistent, our proposed estimator r̂ appears
consistent, though it might not be asymptotically normal

we expect a large efficiency gain for a good predictor f and noisy Y
When we assume covariate shift but it fails to hold,

the nonparametric estimator r̂np is still consistent, because it does not leverage covariate
shift

our proposed estimator r̂ can be severely biased

there is a trade-off between efficiency and robustness against misassuming dataset shift
condition
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Data analysis: HIV risk prediction under the four most common dataset
shift conditions

Data from a large population-based prospective cohort study in KwaZulu-Natal, South Africa
(Tanser et al., 2013).

Y : HIV seroconversion (Y/N)

X : baseline covariates including age, sex, marital status, etc.

Target population: peri-urban communities with community antiretroviral therapy (ART)
coverage below 15% (n = 1, 418)

Source population: urban and rural communities (n = 12, 385)
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Data analysis: HIV risk prediction under the four most common dataset
shift conditions

Train a classifier f using half of the source population data (n = 6192)

Use n = 50 target population datapoints and the other half of the source population data
to estimate prediction error

r∗ = Pr(Y ̸= f (X ) | A = 0) = E[1(Y ̸= f (X )) | A = 0]

Use the rest of the target population data for validation

Hongxiang (David) Qiu (EpiBio, MSU) Eff Risk Est DS JSM 2024 56 / 58



Data analysis: HIV risk prediction under the four common dataset shift
conditions

Table: Risk estimates from HIV risk prediction data. The risk estimate from the validation dataset is
0.24 (95% CI: 0.22–0.26).

Dataset Shift Condition Estimate S.E. 95% CI P-value
None 0.24 0.060 (0.12, 0.36) —
Concept shift in the features 0.26 0.057 (0.15, 0.38) 0.29
Concept shift in the labels 0.10 0.010 (0.08, 0.12) 0.02
Full-data covariate shift 0.19 0.026 (0.14, 0.25) 0.41
Full-data label shift 0.23 0.059 (0.11, 0.34) 0.42
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Data analysis findings

For the most plausible condition a prior (covariate shift), we do not reject this condition
and obtain a large efficiency gain

> 50% smaller S.E. and shorter confidence interval compared to the nonparametric
estimator

Under a plausible dataset shift condition, using our proposed estimator can lead to
substantial efficiency gain

Our test rejected concept shit in the labels but did not reject the others

Our test might be underpowered. We recommend using prior knowledge to judge what
dataset shift condition is plausible
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