Model-Agnostic Berry-Esseen-Type Bounds for Augmented Inverse Probability Weighted Estimators in Randomized Controlled Trials

Hongxiang (David) Qiu

Department of Epidemiology and Biostatistics, Michigan State University

JSM 2025

Table of Contents

- Motivation
- 2 Preliminaries
- 3 Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs
- 4 Asymptotic variance estimator's bias
- Numerical simulations

Motivation

- Modern non-/semi-parametric estimators have been increasingly popular in causal inference, machine learning, . . .
 - Augmented inverse probability weighting (AIPW)
 - Double/debiased machine leaning (DML)
 - ► Targeted minimum loss-based estimation (TMLE)

 - ▶ Variants: various nuisance estimators, sample-splitting/cross-fitting, calibration, . . .

Motivation

- Modern non-/semi-parametric estimators have been increasingly popular in causal inference, machine learning, . . .
 - Augmented inverse probability weighting (AIPW)
 - Double/debiased machine leaning (DML)
 - ► Targeted minimum loss-based estimation (TMLE)

 - ▶ Variants: various nuisance estimators, sample-splitting/cross-fitting, calibration, . . .
- These estimators share same asymptotic normal distribution under same/similar conditions, but may differ in moderate samples.

• Cross-fitting is a technique applicable to many estimators

- Cross-fitting is a technique applicable to many estimators
- Numerical simulations have shown that cross-fitting may improve moderate-sample performance (Li et al., 2022; Smith et al., 2024)

- Cross-fitting is a technique applicable to many estimators
- Numerical simulations have shown that cross-fitting may improve moderate-sample performance (Li et al., 2022; Smith et al., 2024)
 - ► Simulations cannot cover all scenarios. . .

- Cross-fitting is a technique applicable to many estimators
- Numerical simulations have shown that cross-fitting may improve moderate-sample performance (Li et al., 2022; Smith et al., 2024)
 - Simulations cannot cover all scenarios. . .
- Theoretically, it is widely accepted that cross-fitting improves the estimator by dropping Donsker conditions via sample splitting

- Cross-fitting is a technique applicable to many estimators
- Numerical simulations have shown that cross-fitting may improve moderate-sample performance (Li et al., 2022; Smith et al., 2024)
 - Simulations cannot cover all scenarios. . .
- Theoretically, it is widely accepted that cross-fitting improves the estimator by dropping Donsker conditions via sample splitting
- What if Donsker conditions are known to hold? Is cross-fitting still better?

- Cross-fitting is a technique applicable to many estimators
- Numerical simulations have shown that cross-fitting may improve moderate-sample performance (Li et al., 2022; Smith et al., 2024)
 - Simulations cannot cover all scenarios. . .
- Theoretically, it is widely accepted that cross-fitting improves the estimator by dropping Donsker conditions via sample splitting
- What if Donsker conditions are known to hold? Is cross-fitting still better?
- Generally, how can we theoretically compare these estimators and spot their differences in a meaningful way, given that they have the same asymptotic normal distribution?

Overarching goal:

Overarching goal:

What is the convergence rate of CI coverage to its nominal coverage?

• Distinct question from the estimator's convergence rate or asymptotic distribution

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?
- For simpler problems (e.g., sample mean), this rate (or its upper bound) is known (Berry-Esseen bound)

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?
- For simpler problems (e.g., sample mean), this rate (or its upper bound) is known (Berry-Esseen bound)
- To the best of my knowledge, no existing literature directly addresses this question for modern flexible non-/semi-parametric estimators

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?
- For simpler problems (e.g., sample mean), this rate (or its upper bound) is known (Berry-Esseen bound)
- To the best of my knowledge, no existing literature directly addresses this question for modern flexible non-/semi-parametric estimators
- In this work, consider a simple, yet practical, setting:

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?
- For simpler problems (e.g., sample mean), this rate (or its upper bound) is known (Berry-Esseen bound)
- To the best of my knowledge, no existing literature directly addresses this question for modern flexible non-/semi-parametric estimators
- In this work, consider a simple, yet practical, setting:
 - ► AIPW estimator in randomized controlled trials (RCTs)

Overarching goal:

- Distinct question from the estimator's convergence rate or asymptotic distribution
- Meaningful question: E.g., can we trust Wald-Cls based on asymptotic normality?
- For simpler problems (e.g., sample mean), this rate (or its upper bound) is known (Berry-Esseen bound)
- To the best of my knowledge, no existing literature directly addresses this question for modern flexible non-/semi-parametric estimators
- In this work, consider a simple, yet practical, setting:
 - ► AIPW estimator in randomized controlled trials (RCTs)
 - ► Wald-Cl with plug-in influence function-based standard error (SE)

Table of Contents

- Motivation
- 2 Preliminaries
- 3 Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs
- 4 Asymptotic variance estimator's bias
- Numerical simulations

JSM 2025

• Data: n iid data drawn from P_*

- Data: n iid data drawn from P_*
 - ► X: baseline covariates

- Data: n iid data drawn from P_*
 - X: baseline covariates
 - ► A: randomized (may depend on X) binary treatment

- Data: n iid data drawn from P_*
 - X: baseline covariates
 - ► A: randomized (may depend on X) binary treatment
 - Y: real-valued outcome

- Data: n iid data drawn from P_*
 - X: baseline covariates
 - ► A: randomized (may depend on X) binary treatment
 - Y: real-valued outcome
- ullet Estimand: mean counterfactual outcome $\psi_*:=\mathbb{E}[Y^1]$ (average treatment effect is similar)

- Data: n iid data drawn from P_*
 - X: baseline covariates
 - ► A: randomized (may depend on X) binary treatment
 - Y: real-valued outcome
- ullet Estimand: mean counterfactual outcome $\psi_*:=\mathbb{E}[Y^1]$ (average treatment effect is similar)
- Propensity score $\pi_*(X) := \Pr(A = 1 \mid X)$ is known

- Data: n iid data drawn from P_*
 - X: baseline covariates
 - A: randomized (may depend on X) binary treatment
 - Y: real-valued outcome
- ullet Estimand: mean counterfactual outcome $\psi_*:=\mathbb{E}[Y^1]$ (average treatment effect is similar)
- Propensity score $\pi_*(X) := \Pr(A = 1 \mid X)$ is known
- ullet Outcome model $Q_*(X):=\mathbb{E}[Y\mid X,A=1]$ is unknown and may be estimated flexibly

Review non-cross-fit AIPW estimator

Doubly-robust transformation (uncentered influence function):

$$\mathcal{T}(Q)(x,a,y) := \frac{a}{\pi_*(x)}(y-Q(x)) + Q(x)$$

- lacktriangle Estimate Q_* with a flexible estimator \hat{Q}
- $\tilde{\psi} := \frac{1}{n} \sum_{i=1}^{n} \mathcal{T}(\hat{Q})(X_i, A_i, Y_i)$
- **1** Plug-in asymptotic variance estimator: $\tilde{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n \{ \mathcal{T}(\hat{Q})(X_i, A_i, Y_i) \tilde{\psi} \}^2$
- Nominal $(1-\alpha)$ -level Wald-CI: $\tilde{\psi} \pm z_{\alpha/2}\tilde{\sigma}/\sqrt{n}$

Review cross-fit AIPW estimator

Review cross-fit AIPW estimator

- Split data into K folds of equal size. Let I_k be the index set of fold k.
- \bigcirc For each fold k,
 - a) Estimate Q_* with a flexible estimator \hat{Q}_k using data out of fold k
 - b) $\hat{\psi}_k := rac{1}{|I_k|} \sum_{i \in I_k} \mathcal{T}(\hat{Q}_k)(X_i, A_i, Y_i)$
 - c) $\hat{\sigma}_k^2 := \frac{1}{|I_k|} \sum_{i \in I_k} \{ \mathcal{T}(\hat{Q}_k)(X_i, A_i, Y_i) \hat{\psi}_k \}^2$
- **3** Combine all folds: $\hat{\psi} := \frac{1}{K} \sum_{k=1}^K \hat{\psi}_k$, $\hat{\sigma}^2 := \frac{1}{K} \sum_{k=1}^K \hat{\sigma}_k^2$
- **o** Nominal (1-lpha)-level Wald-CI: $\hat{\psi}\pm z_{lpha/2}\hat{\sigma}/\sqrt{n}$

Review of asymptotic properties

Because of known propensity score (i.e., randomization), AIPW estimator is more robust than in observational settings (Rubin & Van Der Laan, 2008).

- If \hat{Q} (\hat{Q}_k) converges to Q_* (regardless of rates), then $\tilde{\psi}$ $(\hat{\psi})$ is asymptotically efficient
- ullet If \hat{Q} (\hat{Q}_k) converges to some function Q_{∞} , then $ilde{\psi}$ $(\hat{\psi})$ is asymptotically normal

(Assuming Donsker conditions for $\tilde{\psi}$)

Table of Contents

- Motivation
- Preliminaries
- 3 Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs
- 4 Asymptotic variance estimator's bias
- Numerical simulations

JSM 2025

• Let $Q_\#$ be any fixed function that may depend on n that is close to \hat{Q} , e.g., $x \mapsto \mathbb{E}[\hat{Q}(x)]$.

13 / 27

- Let $Q_\#$ be any fixed function that may depend on n that is close to \hat{Q} , e.g., $x \mapsto \mathbb{E}[\hat{Q}(x)]$.
 - lacktriangle Better non-asymptotic approximation than the limit Q_{∞} of \hat{Q}

- ullet Let $Q_\#$ be any fixed function that may depend on n that is close to \hat{Q} , e.g., $x\mapsto \mathbb{E}[\hat{Q}(x)]$.
 - lacktriangle Better non-asymptotic approximation than the limit Q_{∞} of \hat{Q}
- Approximate scaled variance based on $Q_{\#}$:

$$\sigma_{\#}^2 := \mathbb{E}[\{\mathcal{T}(Q_{\#})(X, A, Y) - \psi_*\}^2]$$

- Let $Q_{\#}$ be any fixed function that may depend on n that is close to \hat{Q} , e.g., $x \mapsto \mathbb{E}[\hat{Q}(x)]$.
 - **b** Better non-asymptotic approximation than the limit Q_{∞} of \hat{Q}
- Approximate scaled variance based on $Q_{\#}$:

$$\sigma_{\#}^2 := \mathbb{E}[\{\mathcal{T}(Q_{\#})(X, A, Y) - \psi_*\}^2]$$

• Expectation of asymptotic variance estimator:

$$\sigma_\dagger^2 := egin{cases} \mathbb{E}[ilde{\sigma}^2] & ext{non-cross-fit} \ \mathbb{E}[\hat{\sigma}^2] & ext{cross-fit} \end{cases}$$

- ullet Let $Q_\#$ be any fixed function that may depend on n that is close to \hat{Q} , e.g., $x\mapsto \mathbb{E}[\hat{Q}(x)]$.
 - lacktriangle Better non-asymptotic approximation than the limit Q_{∞} of \hat{Q}
- Approximate scaled variance based on $Q_{\#}$:

$$\sigma_{\#}^2 := \mathbb{E}[\{\mathcal{T}(Q_{\#})(X, A, Y) - \psi_*\}^2]$$

• Expectation of asymptotic variance estimator:

$$\sigma^2_\dagger := egin{cases} \mathbb{E}[ilde{\sigma}^2] & ext{non-cross-fit} \ \mathbb{E}[\hat{\sigma}^2] & ext{cross-fit} \end{cases}$$

 \bullet ϕ : standard Gaussian density

$$\Pr(\hat{\psi} - z_{\alpha/2}\hat{\sigma}/\sqrt{n} \le \psi_* \le \hat{\psi} + z_{\alpha/2}\hat{\sigma}/\sqrt{n})$$

$$= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_{\dagger} - \sigma_{\#}}{\sigma_{\#}} + O\left(\sqrt{\frac{\log n}{n}} + \left\{\mathbb{E}\|\hat{Q}_k - Q_{\#}\|_{P_*,2}^2\right\}^{1/3}\right)$$

The constants in the O-term depend on P_* and are omitted here.

$$\Pr(\hat{\psi} - z_{\alpha/2}\hat{\sigma}/\sqrt{n} \le \psi_* \le \hat{\psi} + z_{\alpha/2}\hat{\sigma}/\sqrt{n})$$

$$= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_{\dagger} - \sigma_{\#}}{\sigma_{\#}} + O\left(\sqrt{\frac{\log n}{n}} + \left\{\mathbb{E}\|\hat{Q}_k - Q_{\#}\|_{P_*,2}^2\right\}^{1/3}\right)$$

The constants in the O-term depend on P_* and are omitted here.

• This form is somewhat deceiving: The green rate is the slowest

$$\Pr(\hat{\psi} - z_{\alpha/2}\hat{\sigma}/\sqrt{n} \le \psi_* \le \hat{\psi} + z_{\alpha/2}\hat{\sigma}/\sqrt{n})$$

$$= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_{\dagger} - \sigma_{\#}}{\sigma_{\#}} + O\left(\sqrt{\frac{\log n}{n}} + \left\{\mathbb{E}\|\hat{Q}_k - Q_{\#}\|_{P_*,2}^2\right\}^{1/3}\right)$$

The constants in the O-term depend on P_* and are omitted here.

- This form is somewhat deceiving: The green rate is the slowest
- Under subgaussian assumptions on $\{\hat{Q}_k(X) Q_\#(X)\}/\|\hat{Q}_k Q_\#\|_{P_*,2}$ (given \hat{Q}_k) and $\|\hat{Q}_k Q_\#\|_{P_*,2}/\sqrt{\mathbb{E}\|\hat{Q}_k Q_\#\|_{P_*,2}^2}$ etc., the green rate can be replaced by a faster rate $\sqrt{\mathbb{E}\|\hat{Q}_k Q_\#\|_{P_*,2}^2}\log\|\hat{Q}_k Q_\#\|_{P_*,2}^{-2}$, comparable to the rate of $\sigma_\dagger \sigma_\#$ except for a log factor.

• Donsker conditions are needed for asymptotic normality without cross-fitting.

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- ullet Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- ullet Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - Highly Adaptive Lasso (HAL)

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = o_p(n^{-1/4})$

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - ► Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = o_p(n^{-1/4})$
 - ► A common rate requirement for AIPW estimator

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = \mathrm{o}_p(n^{-1/4})$
 - ► A common rate requirement for AIPW estimator
 - \triangleright Often satisfied if \hat{Q} minimizes an empirical risk over a Donsker class

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - ► Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = o_p(n^{-1/4})$
 - ► A common rate requirement for AIPW estimator
 - lacktriangle Often satisfied if \hat{Q} minimizes an empirical risk over a Donsker class
- ullet If using a VC-hull-type class, let u be the VC-dimension of the associated VC-class

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - ► Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = o_p(n^{-1/4})$
 - ► A common rate requirement for AIPW estimator
 - lacktriangle Often satisfied if \hat{Q} minimizes an empirical risk over a Donsker class
- ullet If using a VC-hull-type class, let u be the VC-dimension of the associated VC-class
- Let $\delta \lesssim n^{-1/4}$

- Donsker conditions are needed for asymptotic normality without cross-fitting.
- Assume that Donsker conditions are satisfied by a VC-hull-type or a VC-type class with a constant envelope M
 - ► Highly Adaptive Lasso (HAL)
- Assume $\|\hat{Q} Q_{\#}\|_{P_*,2} = o_p(n^{-1/4})$
 - ► A common rate requirement for AIPW estimator
 - \triangleright Often satisfied if \hat{Q} minimizes an empirical risk over a Donsker class
- ullet If using a VC-hull-type class, let u be the VC-dimension of the associated VC-class
- Let $\delta \lesssim n^{-1/4}$
- Used the concentration inequality for suprema of empirical processes in Chernozhukov et al. (2014)

$$\begin{split} & \operatorname{\mathsf{Pr}}(\tilde{\psi} - z_{\alpha/2}\tilde{\sigma}/\sqrt{n} \leq \psi_* \leq \tilde{\psi} + z_{\alpha/2}\tilde{\sigma}/\sqrt{n}) \\ &= 1 - \alpha + 2\phi(z_{\alpha/2})z_{\alpha/2}\frac{\sigma_\dagger - \sigma_\#}{\sigma_\#} + \operatorname{O}\left(\sqrt{\frac{\log n}{n}} + \left\{\mathbb{E}\|\hat{Q} - Q_\#\|_{P_*,2}^2\right\}^{1/3}\right) \\ &+ \underbrace{\operatorname{O}(R(\delta, \nu, n)) + \operatorname{\mathsf{Pr}}(\|\hat{Q} - Q_\#\|_{P_*,2} > \delta M)}_{\text{additional terms compared to cross-fitting} \end{split}$$

where

$$R(\delta, \nu, n) = \begin{cases} \delta^{2/(\nu+2)} + n^{-1/2} \delta^{4/(\nu+2)-2} & \text{VC-hull-type class} \\ \delta \sqrt{\log \delta^{-1}} + n^{-1/2} \log \delta^{-1} & \text{VC-type class} \end{cases}$$

The green rate can be replaced by a faster rate $\sqrt{\mathbb{E}\|\hat{Q} - Q_\#\|_{P_*,2}^2} \log \|\hat{Q} - Q_\#\|_{P_*,2}^{-2}$ under similar subgaussian assumptions.

Explicit effect of function class complexity:

- If the function class is rich (VC-hull-type with moderate-to-large ν), $R(\delta, \nu, n)$ and the green rate are the slowest
- If the function class is not as rich (VC-type), then $R(\delta, \nu, n)$ does not dominate
- Note that $R(\delta, \nu, n)$ might have room for improvement
 - $ightharpoonup R(\delta,
 u,n)$ arises from empirical processes, the deviation of $ilde{\psi}$ from a sample mean
 - ▶ Simulations suggest that non-cross-fit estimator can be fairly close to normal

Explicit effect of function class complexity:

- If the function class is rich (VC-hull-type with moderate-to-large ν), $R(\delta, \nu, n)$ and the green rate are the slowest
- If the function class is not as rich (VC-type), then $R(\delta, \nu, n)$ does not dominate
- Note that $R(\delta, \nu, n)$ might have room for improvement
 - $ightharpoonup R(\delta, \nu, n)$ arises from empirical processes, the deviation of $\tilde{\psi}$ from a sample mean
 - ▶ Simulations suggest that non-cross-fit estimator can be fairly close to normal

Implicit effect of function class complexity: The L_2 -convergence rate may depend on the function class complexity.

Explicit effect of function class complexity:

- If the function class is rich (VC-hull-type with moderate-to-large ν), $R(\delta, \nu, n)$ and the green rate are the slowest
- If the function class is not as rich (VC-type), then $R(\delta, \nu, n)$ does not dominate
- Note that $R(\delta, \nu, n)$ might have room for improvement
 - $ightharpoonup R(\delta,
 u,n)$ arises from empirical processes, the deviation of $ilde{\psi}$ from a sample mean
 - ▶ Simulations suggest that non-cross-fit estimator can be fairly close to normal

Implicit effect of function class complexity: The L_2 -convergence rate may depend on the function class complexity.

Effect of asymptotic variance estimator's bias $\sigma_{\dagger} - \sigma_{\#}$: It could systematically affect Wald-Cl coverage, especially if

- $R(\delta, \nu, n)$ can be improved with sharper empirical process bounds, and
- subgaussian assumptions are satisfied so that the green term is somewhat comparable to the rate of $\sigma_{\dagger} \sigma_{\#}$

Table of Contents

- Motivation
- Preliminaries
- Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs
- 4 Asymptotic variance estimator's bias
- Numerical simulations

$$\frac{\sigma_{\dagger}^{2} - \sigma_{\#}^{2}}{\sigma_{\dagger}^{2}} = \underbrace{\mathbb{E} \int \frac{1 - \pi_{*}(x)}{\pi_{*}(x)} \{\hat{Q}_{k}(x) - Q_{\#}(x)\}^{2} dP_{*}(x)}_{\text{order } \mathbb{E} \|\hat{Q}_{k} - Q_{\#}\|_{P_{*}}^{2}} - \underbrace{\operatorname{Var}(\hat{\psi})}_{\text{order } n^{-1}}$$

If we use flexible \hat{Q}_k , we often anticipate $\mathbb{E}\|\hat{Q}_k - Q_\#\|_{P_*,2}^2$ to be much slower than n^{-1} , so we anticipate $\sigma_+^2 - \sigma_\#^2 > 0$, i.e., increased coverage.

$$\frac{\sigma_{\dagger}^{2} - \sigma_{\#}^{2}}{\sigma_{\dagger}^{2} - \sigma_{\#}^{2}} = \underbrace{\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{A_{i}}{\pi_{*}(X_{i})^{2}}(Y_{i} - \hat{Q}(X_{i}))^{2}\right] - \mathbb{E}\left[\frac{A}{\pi_{*}(X)^{2}}(Y - Q_{\#}(X))^{2}\right]}_{(II)} + \underbrace{\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\hat{Q}(X_{i})^{2}\right] - \mathbb{E}[Q_{\#}(X)^{2}]}_{(III)} + \underbrace{2\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{A_{i}}{\pi_{*}(X_{i})}(Y_{i} - \hat{Q}(X_{i}))\hat{Q}(X_{i})\right] - 2\mathbb{E}\left[\frac{A}{\pi_{*}(X)}(Y - Q_{\#}(X))Q_{\#}(X)\right]}_{(IV)} - \underbrace{\underbrace{\operatorname{Var}(\tilde{\psi})}_{\text{order }n^{-1}}}_{(III)}$$

Analysis of each term:

(I) Anticipated to be ≤ 0 and of order $\mathbb{E}\|\hat{Q} - Q_{\#}\|_{P_{*},2}$: When π_{*} is a constant and \hat{Q} is an empirical MSE minimizer over a function class containing $Q_{\#}$,

$$(I) \leq \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{A_{i}}{\pi_{*}(X_{i})^{2}}(Y_{i}-Q_{\#}(X_{i}))^{2}\right] - \mathbb{E}\left[\frac{A}{\pi_{*}(X)^{2}}(Y-Q_{\#}(X))^{2}\right] = 0$$

- (II) Anticipated to be \leq 0 if \hat{Q} is shrunk towards 0 or smoothed; otherwise, no obvious bias
- (III) & (IV) Anticipated to be \approx 0: If π_* is a constant, and \hat{Q} and $Q_\#$ are projections, then (III)=(IV)=0.

Analysis of each term:

(I) Anticipated to be ≤ 0 and of order $\mathbb{E}\|\hat{Q} - Q_{\#}\|_{P_*,2}$: When π_* is a constant and \hat{Q} is an empirical MSE minimizer over a function class containing $Q_{\#}$,

$$(I) \leq \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{A_{i}}{\pi_{*}(X_{i})^{2}}(Y_{i}-Q_{\#}(X_{i}))^{2}\right] - \mathbb{E}\left[\frac{A}{\pi_{*}(X)^{2}}(Y-Q_{\#}(X))^{2}\right] = 0$$

- (II) Anticipated to be \leq 0 if \hat{Q} is shrunk towards 0 or smoothed; otherwise, no obvious bias
- (III) & (IV) Anticipated to be \approx 0: If π_* is a constant, and \hat{Q} and $Q_\#$ are projections, then (III) = (IV) = 0.

If we use flexible \hat{Q} , we often anticipate $\mathbb{E}\|\hat{Q} - Q_{\#}\|_{P_*,2}^2$ to be much slower than n^{-1} , so we might anticipate $\sigma_{\dagger}^2 - \sigma_{\#}^2 < 0$, i.e., decreased coverage.

Table of Contents

- Motivation
- 2 Preliminaries
- 3 Non-asymptotic Berry-Esseen-type bounds for AIPW in RCT
- 4 Asymptotic variance estimator's bias
- Numerical simulations

22 / 27

Setup

- Estimate average treatment effect in RCT with 7 covariates
- Very complicated true outcome model Q_{*}
- Small to moderate samples: n = 100,400
- CV: 20-fold cross-fitting
- \hat{Q} : SL = Super Learner + GLM-type + HAL; misSL = Super Learner + GLM-type

Results

(B): Dots are Monte Carlo estimates of estimators' standard deviations. Thick gray line is efficient standard deviation.

Interpretations

- With \hat{Q} closer to the truth Q_* , we gain more efficiency.
- ullet Cross-fitting or simple \hat{Q} yields better Wald-CI coverage
- ullet Non-cross-fitting and flexible \hat{Q} (SL): underestimate $\sigma_{\#}^2 \implies$ undercoverage
- ullet Cross-fitting and flexible \hat{Q} (CVSL): overestimate $\sigma_{\#}^2 \implies$ overcoverage (?)
- Efficient asymptotic variance is a poor approximation to the variance of SL/CVSL for moderate n

• These bounds might not be tight

- These bounds might not be tight
 - ► A smaller upper bound does not imply actual faster rate

- These bounds might not be tight
 - ► A smaller upper bound does not imply actual faster rate
 - ightharpoonup The bounds might be improved with more information on \hat{Q} and better proof techniques

- These bounds might not be tight
 - ► A smaller upper bound does not imply actual faster rate
 - lacktriangle The bounds might be improved with more information on \hat{Q} and better proof techniques
- A spectrum of complexity: not just "Donsker vs. non-Donsker"

- These bounds might not be tight
 - A smaller upper bound does not imply actual faster rate
 - ightharpoonup The bounds might be improved with more information on \hat{Q} and better proof techniques
- A spectrum of complexity: not just "Donsker vs. non-Donsker"
- Cross-fitting can outperform non-cross-fitting, even if Donsker conditions hold

- These bounds might not be tight
 - A smaller upper bound does not imply actual faster rate
 - ightharpoonup The bounds might be improved with more information on \hat{Q} and better proof techniques
- A spectrum of complexity: not just "Donsker vs. non-Donsker"
- Cross-fitting can outperform non-cross-fitting, even if Donsker conditions hold
- Potential trade-off between efficiency and Wald-Cl coverage in RCT

- These bounds might not be tight
 - A smaller upper bound does not imply actual faster rate
 - ightharpoonup The bounds might be improved with more information on \hat{Q} and better proof techniques
- A spectrum of complexity: not just "Donsker vs. non-Donsker"
- Cross-fitting can outperform non-cross-fitting, even if Donsker conditions hold
- Potential trade-off between efficiency and Wald-Cl coverage in RCT
 - For more efficiency,

more flexible \hat{Q} to approximate complicated truth Q_*

$$\Longrightarrow$$
 slower $\mathbb{E}\|\hat{Q}-Q_{\#}\|_{P_*,2}^2$

⇒ slower convergence of Wald-Cl coverage to its nominal coverage

References I

- Chernozhukov, V., Chetverikov, D., & Kato, K. (2014). Gaussian approximation of suprema of empirical processes. *Annals of Statistics*, 42(4), 1564–1597.
- Li, H., Rosete, S., Coyle, J., Phillips, R. V., Hejazi, N. S., Malenica, I., Arnold, B. F., Benjamin-Chung, J., Mertens, A., Colford, J. M., van der Laan, M. J., & Hubbard, A. E. (2022). Evaluating the robustness of targeted maximum likelihood estimators via realistic simulations in nutrition intervention trials. *Statistics in Medicine*, 41(12), 2132–2165.
- Rubin, D. B. & Van Der Laan, M. J. (2008). Covariate Adjustment for the Intention-to-Treat Parameter with Empirical Efficiency Maximization. *UCB Division of Biostatistics Working Paper*, 229.
- Smith, M. J., Phillips, R. V., Maringe, C., & Fernandez, M. A. L. (2024). Performance of Cross-Validated Targeted Maximum Likelihood Estimation. arXiv preprint arXiv:2409.11265v1.