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Motivation

Motivation

Modern non-/semi-parametric estimators have been increasingly popular in causal
inference, machine learning, . . .
▶ Augmented inverse probability weighting (AIPW)
▶ Double/debiased machine leaning (DML)
▶ Targeted minimum loss-based estimation (TMLE)
▶ . . .
▶ Variants: various nuisance estimators, sample-splitting/cross-�tting, calibration, . . .

These estimators share same asymptotic normal distribution under same/similar
conditions, but may di�er in moderate samples.
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Motivation

Example: Cross-�tting

Cross-�tting is a technique applicable to many estimators

Numerical simulations have shown that cross-�tting may improve moderate-sample
performance (Li et al., 2022; Smith et al., 2024)

▶ Simulations cannot cover all scenarios. . .

Theoretically, it is widely accepted that cross-�tting improves the estimator by dropping
Donsker conditions via sample splitting

What if Donsker conditions are known to hold? Is cross-�tting still better?

Generally, how can we theoretically compare these estimators and spot their di�erences in
a meaningful way, given that they have the same asymptotic normal distribution?
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Motivation

Objective: Con�dence interval (CI) coverage

Overarching goal:

What is the convergence rate of CI coverage to its nominal coverage?

Distinct question from the estimator's convergence rate or asymptotic distribution

Meaningful question: E.g., can we trust Wald-CIs based on asymptotic normality?

For simpler problems (e.g., sample mean), this rate (or its upper bound) is known
(Berry-Esseen bound)

To the best of my knowledge, no existing literature directly addresses this question for
modern �exible non-/semi-parametric estimators

In this work, consider a simple, yet practical, setting:

▶ AIPW estimator in randomized controlled trials (RCTs)
▶ Wald-CI with plug-in in�uence function-based standard error (SE)
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Preliminaries

Setup

Data: n iid data drawn from P∗

▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates

▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment

▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Setup

Data: n iid data drawn from P∗
▶ X : baseline covariates
▶ A: randomized (may depend on X ) binary treatment
▶ Y : real-valued outcome

Estimand: mean counterfactual outcome ψ∗ := E[Y 1] (average treatment e�ect is similar)

Propensity score π∗(X ) := Pr(A = 1 | X ) is known

Outcome model Q∗(X ) := E[Y | X ,A = 1] is unknown and may be estimated �exibly

Hongxiang (David) Qiu (Epi & Bio, MSU) RCT AIPW Berry-Esseen JSM 2025 7 / 27



Preliminaries

Review non-cross-�t AIPW estimator

Doubly-robust transformation (uncentered in�uence function):

T (Q)(x , a, y) :=
a

π∗(x)
(y − Q(x)) + Q(x)

1 Estimate Q∗ with a �exible estimator Q̂

2 ψ̃ := 1
n

∑n
i=1 T (Q̂)(Xi ,Ai ,Yi )

3 Plug-in asymptotic variance estimator: σ̃2 := 1
n

∑n
i=1{T (Q̂)(Xi ,Ai ,Yi )− ψ̃}2

4 Nominal (1− α)-level Wald-CI: ψ̃ ± zα/2σ̃/
√
n
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Preliminaries

Review cross-�t AIPW estimator

1 Split data into K folds of equal size. Let Ik be the index set of fold k .
2 For each fold k ,

a) Estimate Q∗ with a �exible estimator Q̂k using data out of fold k
b) ψ̂k := 1

|Ik |
∑

i∈Ik
T (Q̂k)(Xi ,Ai ,Yi )

c) σ̂2k := 1

|Ik |
∑

i∈Ik
{T (Q̂k)(Xi ,Ai ,Yi )− ψ̂k}2

3 Combine all folds: ψ̂ := 1
K

∑K
k=1 ψ̂k , σ̂

2 := 1
K

∑K
k=1 σ̂

2
k

4 Nominal (1− α)-level Wald-CI: ψ̂ ± zα/2σ̂/
√
n
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Preliminaries

Review of asymptotic properties

Because of known propensity score (i.e., randomization), AIPW estimator is more robust than
in observational settings (Rubin & Van Der Laan, 2008).

If Q̂ (Q̂k) converges to Q∗ (regardless of rates), then ψ̃ (ψ̂) is asymptotically e�cient

If Q̂ (Q̂k) converges to some function Q∞, then ψ̃ (ψ̂) is asymptotically normal

(Assuming Donsker conditions for ψ̃)
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Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs

Notations

Let Q# be any �xed function that may depend on n that is close to Q̂, e.g., x 7→ E[Q̂(x)].

▶ Better non-asymptotic approximation than the limit Q∞ of Q̂

Approximate scaled variance based on Q#:

σ2# := E[{T (Q#)(X ,A,Y )− ψ∗}2]

Expectation of asymptotic variance estimator:

σ2† :=

{
E[σ̃2] non-cross-�t

E[σ̂2] cross-�t

ϕ: standard Gaussian density
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Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs

Cross-�t

Pr(ψ̂ − zα/2σ̂/
√
n ≤ ψ∗ ≤ ψ̂ + zα/2σ̂/

√
n)

= 1− α+ 2ϕ(zα/2)zα/2
σ† − σ#
σ#

+O

(√
log n

n
+
{
E∥Q̂k − Q#∥2P∗,2

}1/3)

The constants in the O-term depend on P∗ and are omitted here.

This form is somewhat deceiving: The green rate is the slowest

Under subgaussian assumptions on {Q̂k(X )− Q#(X )}/∥Q̂k − Q#∥P∗,2 (given Q̂k) and

∥Q̂k − Q#∥P∗,2/
√

E∥Q̂k − Q#∥2P∗,2
etc., the green rate can be replaced by a faster rate√

E∥Q̂k − Q#∥2P∗,2
log ∥Q̂k − Q#∥−2

P∗,2
, comparable to the rate of σ† − σ# except for a log

factor.
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Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs

Non-cross-�t: more on Donsker condition

Donsker conditions are needed for asymptotic normality without cross-�tting.

Assume that Donsker conditions are satis�ed by a VC-hull-type or a VC-type class with a
constant envelope M

▶ Highly Adaptive Lasso (HAL)

Assume ∥Q̂ − Q#∥P∗,2 = op(n
−1/4)

▶ A common rate requirement for AIPW estimator
▶ Often satis�ed if Q̂ minimizes an empirical risk over a Donsker class

If using a VC-hull-type class, let ν be the VC-dimension of the associated VC-class

Let δ ≲ n−1/4

Used the concentration inequality for suprema of empirical processes in Chernozhukov
et al. (2014)
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Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs

Non-cross-�t

Pr(ψ̃ − zα/2σ̃/
√
n ≤ ψ∗ ≤ ψ̃ + zα/2σ̃/

√
n)

= 1− α+ 2ϕ(zα/2)zα/2
σ† − σ#
σ#

+O

(√
log n

n
+
{
E∥Q̂ − Q#∥2P∗,2

}1/3)
+O(R(δ, ν, n)) + Pr(∥Q̂ − Q#∥P∗,2 > δM)︸ ︷︷ ︸

additional terms compared to cross-�tting

where

R(δ, ν, n) =

{
δ2/(ν+2) + n−1/2δ4/(ν+2)−2 VC-hull-type class

δ
√
log δ−1 + n−1/2 log δ−1 VC-type class

The green rate can be replaced by a faster rate
√

E∥Q̂ − Q#∥2P∗,2
log ∥Q̂ − Q#∥−2

P∗,2
under

similar subgaussian assumptions.
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Non-asymptotic Berry-Esseen-type bounds for AIPW in RCTs

Non-cross-�t

Explicit e�ect of function class complexity:

If the function class is rich (VC-hull-type with moderate-to-large ν), R(δ, ν, n) and the
green rate are the slowest
If the function class is not as rich (VC-type), then R(δ, ν, n) does not dominate
Note that R(δ, ν, n) might have room for improvement
▶ R(δ, ν, n) arises from empirical processes, the deviation of ψ̃ from a sample mean
▶ Simulations suggest that non-cross-�t estimator can be fairly close to normal

Implicit e�ect of function class complexity: The L2-convergence rate may depend on the
function class complexity.

E�ect of asymptotic variance estimator's bias σ† − σ#: It could systematically a�ect Wald-CI
coverage, especially if

R(δ, ν, n) can be improved with sharper empirical process bounds, and
subgaussian assumptions are satis�ed so that the green term is somewhat comparable to
the rate of σ† − σ#
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Asymptotic variance estimator's bias
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Asymptotic variance estimator's bias

Cross-�t

σ2† − σ2# = E
∫

1− π∗(x)

π∗(x)
{Q̂k(x)− Q#(x)}2dP∗(x)︸ ︷︷ ︸

order E∥Q̂k−Q#∥2P∗,2

− Var(ψ̂)︸ ︷︷ ︸
order n−1

If we use �exible Q̂k , we often anticipate E∥Q̂k − Q#∥2P∗,2
to be much slower than n−1, so we

anticipate σ2† − σ2# > 0, i.e., increased coverage.
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Asymptotic variance estimator's bias

Non-cross-�t

σ2† − σ2# = E

[
1

n

n∑
i=1

Ai

π∗(Xi )2
(Yi − Q̂(Xi ))

2

]
− E

[
A

π∗(X )2
(Y − Q#(X ))2

]
︸ ︷︷ ︸

(I )

+ E

[
1

n

n∑
i=1

Q̂(Xi )
2

]
− E[Q#(X )2]︸ ︷︷ ︸

(II )

+ 2E

[
1

n

n∑
i=1

Ai

π∗(Xi )
(Yi − Q̂(Xi ))Q̂(Xi )

]
︸ ︷︷ ︸

(III )

− 2E
[

A

π∗(X )
(Y − Q#(X ))Q#(X )

]
︸ ︷︷ ︸

(IV )

− Var(ψ̃)︸ ︷︷ ︸
order n−1
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Asymptotic variance estimator's bias

Non-cross-�t

Analysis of each term:

(I) Anticipated to be ≤ 0 and of order E∥Q̂ − Q#∥P∗,2: When π∗ is a constant and Q̂ is an
empirical MSE minimizer over a function class containing Q#,

(I ) ≤ E

[
1

n

n∑
i=1

Ai

π∗(Xi )2
(Yi − Q#(Xi ))

2

]
− E

[
A

π∗(X )2
(Y − Q#(X ))2

]
= 0

(II) Anticipated to be ≤ 0 if Q̂ is shrunk towards 0 or smoothed; otherwise, no obvious bias

(III) & (IV) Anticipated to be ≈ 0: If π∗ is a constant, and Q̂ and Q# are projections, then
(III ) = (IV ) = 0.

If we use �exible Q̂, we often anticipate E∥Q̂ − Q#∥2P∗,2
to be much slower than n−1, so we

might anticipate σ2† − σ2# < 0, i.e., decreased coverage.
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Numerical simulations
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Numerical simulations

Setup

Estimate average treatment e�ect in RCT with 7 covariates

Very complicated true outcome model Q∗

Small to moderate samples: n = 100, 400

CV: 20-fold cross-�tting

Q̂: SL = Super Learner + GLM-type + HAL; misSL = Super Learner + GLM-type
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Numerical simulations

Results

(B): Dots are Monte Carlo estimates of estimators' standard deviations. Thick gray line is
e�cient standard deviation.
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Numerical simulations

Interpretations

With Q̂ closer to the truth Q∗, we gain more e�ciency.

Cross-�tting or simple Q̂ yields better Wald-CI coverage

Non-cross-�tting and �exible Q̂ (SL): underestimate σ2# =⇒ undercoverage

Cross-�tting and �exible Q̂ (CVSL): overestimate σ2# =⇒ overcoverage (?)

E�cient asymptotic variance is a poor approximation to the variance of SL/CVSL for
moderate n
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Numerical simulations

Discussion

These bounds might not be tight

▶ A smaller upper bound does not imply actual faster rate
▶ The bounds might be improved with more information on Q̂ and better proof techniques

A spectrum of complexity: not just �Donsker vs. non-Donsker�

Cross-�tting can outperform non-cross-�tting, even if Donsker conditions hold

Potential trade-o� between e�ciency and Wald-CI coverage in RCT

▶ For more e�ciency,

more �exible Q̂ to approximate complicated truth Q∗

=⇒ slower E∥Q̂ − Q#∥2P∗,2

=⇒ slower convergence of Wald-CI coverage to its nominal coverage
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Numerical simulations
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